精英家教网 > 高中数学 > 题目详情
14.已知数列{an}为等差数列,其中a2+a3=8,a5=3a2
(1)求数列{an}的通项公式;
(2)数列{bn}中,b1=1,b2=2,从数列{an}中取出第bn项记为cn,若{cn}是等比数列,求{bn}的前n项和.

分析 (1)设等差数列{an}的公差为d,由等差数列的通项公式,可得方程组,解得首项和公差,即可得到所求通项公式;
(2)求得等比数列{cn}的公比,求得bn=$\frac{1}{2}$(3n-1+1),运用数列求和方法:分组求和,化简整理,即可得到所求和.

解答 解:(1)设等差数列{an}的公差为d,
由a2+a3=8,a5=3a2
可得2a1+3d=8,a1+4d=3(a1+d),
解得a1=1,d=2,
则an=a1+(n-1)d=1+2(n-1)=2n-1;
(2)c1=a${\;}_{{b}_{1}}$=a1=1,c2=a${\;}_{{b}_{2}}$=a2=3,
则等比数列{cn}的公比为3,
则cn=c1qn-1=3n-1
又cn=a${\;}_{{b}_{n}}$=2bn-1,
则bn=$\frac{1}{2}$(3n-1+1),
设{bn}的前n项和为Sn
则Sn=$\frac{1}{2}$(1+3+…+3n-1+n)
=$\frac{1}{2}$($\frac{1-{3}^{n}}{1-3}$+n)
=$\frac{{3}^{n}+2n-1}{4}$.

点评 本题考查等差数列和等比数列的通项公式和求和公式的运用,考查数列求和方法:分组求和,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.在自然界中存在着大量的周期函数,比如声波.若两个声波随时间的变化规律分别为:y1=3$\sqrt{2}$sin(100πt),y2=3sin(100πt-$\frac{π}{4}$),则这两个声波合成后(即y=y1+y2)的声波的振幅为(  )
A.6$\sqrt{2}$B.3+3$\sqrt{2}$C.3$\sqrt{2}$D.3$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.四面体ABCD中,AB=2,BC=3,CD=4,DB=5,AC=$\sqrt{13}$,AD=$\sqrt{29}$,则四面体ABCD外接球的表面积是29π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.《九章算术》是我国古代第一部数学专著,全书收集了246个问题及其解法,其中一个问题为“现有一根九节的竹子,自上而下各节的容积成等差数列,上面四节容积之和为3升,下面三节的容积之和为4升,求中间两节的容积各为多少?”该问题中第2节,第3节,第8节竹子的容积之和为(  )
A.$\frac{17}{6}$升B.$\frac{7}{2}$升C.$\frac{113}{66}$升D.$\frac{109}{33}$升

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.P是双曲线C:$\frac{x^2}{2}-{y^2}$=1右支上一点,直线l是双曲线C的一条渐近线,P在l上的射影为Q,F1是双曲线C的左焦点,则|PF1|+|PQ|的最小值为(  )
A.1B.$2+\frac{{\sqrt{15}}}{5}$C.$4+\frac{{\sqrt{15}}}{5}$D.$2\sqrt{2}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在平面直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}x=2+cosα\\ y=4+sinα\end{array}\right.$,以坐标原点O为极点,x轴的正半轴为极轴的坐标系中,曲线C2的方程为ρ(cosθ-msinθ)+1=0(m为常数).
(1)求曲线C1,C2的直角坐标方程;
(2)设P点是C1上到x轴距离最小的点,当C2过点P时,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,出行健步不为难,次日脚疼减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一人走了378里路,第一天健步行走,从第二天起因脚疼每天走的路程为前一天的一半,走了6天后到达目的地.”问此人最后一天走了(  )
A.6里B.12里C.24里D.36里

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数$f(x)=\frac{lnx}{x},g(x)=x({lnx-\frac{ax}{2}-1})$.
(1)求y=f(x)的最大值;
(2)当$a∈[{0,\frac{1}{e}}]$时,函数y=g(x),(x∈(0,e])有最小值. 记g(x)的最小值为h(a),求函
数h(a)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设$f(x)={sin^2}x+\sqrt{3}sinxcosx-\frac{1}{2}(x∈R)$.
(1)求函数f(x)的最小正周期与值域;
(2)设△ABC内角A,B,C的对边分别为a,b,c,A为锐角,$a=2\sqrt{3},c=4$,若f(A)=1,求A,b.

查看答案和解析>>

同步练习册答案