精英家教网 > 高中数学 > 题目详情

【题目】已知向量,函数

1)求函数的单调递减区间;

2)若,求的值.

【答案】1;(2

【解析】

1)由向量数量积和三角函数的诱导公式及辅助角公式化简得fx)=2sin2x),由正弦的单调性即可得到;

2)由,得sinα)=,再由诱导公式和倍角公式化简可得sin2α+,代入可得.

1)∵fx)=2sinxsinx++2sinxcosx

2sinxsinx++2sinxcosx

2sinxcosx+2sinxcosx

sin2x+sin2x

=﹣cos2x+sin2x

2sin2xcos2x

2sin2x),

+2kπ2x+2kπkZ,得+kπx+kπkZ

所以fx)的单调递减区间为.

2)∵f)=,∴2sinα)=,∴sinα)=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某部门经统计,客户对不同款型理财产品的最满意程度百分比和对应的理财总销售量(万元)如下表(最满意度百分比超高时总销售量最高):

产品款型

A

B

C

D

E

F

G

H

I

J

最满意度%

20

34

25

19

26

20

19

24

19

13

总销量(万元)

80

89

89

78

75

71

65

62

60

52

表示理财产品最满意度的百分比,为该理财产品的总销售量(万元).这些数据的散点图如图所示.

(1)在款型理财产品的顾客满意度调查资料中任取份;只有一份最满意的,求含有最满意客户资料事件的概率.

(2)我们约定:相关系数的绝对值在以下是无线性相关,在以上(含)至是一般线性相关,在以上(含)是较强线性相关,若没有达到较强线性相关则采取“末位”剔除制度(即总销售量最少的那一款产品退出理财销售);试求在剔除“末位”款型后的线性回归方程(系数精确到).

数据参考计算值:

项目

21.9

72.1

288.9

37.16

452.1

17.00

附:回归直线方程的斜率和截距的最小二乘法估计分别为:

线性相关系数 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥是梯形,

)证明:平面平面

)求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形中,为边的中点.沿直线翻折成(点不落在底面).为线段的中点,则在翻转过程中,以下命题正确的是(

A.四棱锥体积最大值为

B.线段长度是定值;

C.平面一定成立;

D.存在某个位置,使

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中,错误命题是

A. ,则的逆命题为真

B. 线性回归直线必过样本点的中心

C. 在平面直角坐标系中到点的距离的和为的点的轨迹为椭圆

D. 在锐角中,有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,函数,若,使得不等式成立,则实数的取值范围为( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】党的十九大明确把精准脱贫作为决胜全面建成小康社会必须打好的三大攻坚战之一.为坚决打赢脱贫攻坚战,某帮扶单位为帮助定点扶贫村脱贫,坚持扶贫同扶智相结合,此帮扶单位考察了甲、乙两种不同的农产品加工生产方式,现对两种生产方式的产品质量进行对比,其质量按测试指标可划分为:指标在区间的为优等品;指标在区间的为合格品,现分别从甲、乙两种不同加工方式生产的农产品中,各自随机抽取100件作为样本进行检测,测试指标结果的频数分布表如下:

甲种生产方式:

指标区间

频数

5

15

20

30

15

15

乙种生产方式:

指标区间

频数

5

15

20

30

20

10

(1)在用甲种方式生产的产品中,按合格品与优等品用分层抽样方式,随机抽出5件产品,①求这5件产品中,优等品和合格品各多少件;②再从这5件产品中,随机抽出2件,求这2件中恰有1件是优等品的概率;

(2)所加工生产的农产品,若是优等品每件可售55元,若是合格品每件可售25元.甲种生产方式每生产一件产品的成本为15元,乙种生产方式每生产一件产品的成本为20元.用样本估计总体比较在甲、乙两种不同生产方式下,该扶贫单位要选择哪种生产方式来帮助该扶贫村来脱贫?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设椭圆 ,长轴的右端点与抛物线 的焦点重合,且椭圆的离心率是

(Ⅰ)求椭圆的标准方程;

(Ⅱ)过作直线交抛物线 两点,过且与直线垂直的直线交椭圆于另一点,求面积的最小值,以及取到最小值时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有一场专家报告会,张老师带甲,乙,丙,丁四位同学参加,其中有一个特殊位置可与专家近距离交流,张老师看出每个同学都想去坐这个位置,因此给出一个问题,谁能猜对,谁去坐这个位置.问题如下:某班10位同学参加一次全年级的高二数学竞赛,最后一道题只有6名同学尝试做了,并且这6人中只有1人答对了.听完后,四个同学给出猜测如下:甲猜:答对了;乙猜:不可能答对;丙猜:当中必有1人答对了;丁猜:都不可能答对,在他们回答完后,张老师说四人中只有1人猜对,则张老师把特殊位置给了__________

查看答案和解析>>

同步练习册答案