精英家教网 > 高中数学 > 题目详情
(2012•莆田模拟)小明家订了一份《湄洲日报》,暑假期间他收集了每天报纸送达的时间的数据,并绘制成频率分布直方图如图所示.
(1)请你根据图中的数据信息,写出众数x0=
7:00
7:00
(小时);
(2)小明的父亲离家去上班的时间y在上午7:00~7:30之间,为此小明要求送报人每天在x0时前后半小时内把报纸送达(每个时间点送达的可能性相等)
(i)求小明年的父亲在去上班前能取到报纸(称为事件A)的概率;
(ii)求小明的父亲一周5天(假日除外)能取到报纸的天数X的数学期望.
分析:(1)根据众数是频率分布直方图中最高矩形的底边中点的横坐标可得结论;
(2)(i)作出实验的所有的基本事件由平面区域,以及事件“小明的父亲能拿到报纸”(事件A)的基本事件,利用几何概型的概率公式解之即可;
(ii)分析可知小明的父亲一周5天(假日除外)能取到报纸的天数X服从二项分布,然后根据二项分布的数学期望公式解之即可.
解答:解:(1)观察频率分布直方图,频率最大在[6:50,7:10),众数x0=7:00
故答案为:7:00
(2)记报纸送达的时间为x,x∈[6.5,7.5]
(i)如图所示,实验的所有的基本事件由平面区域Ω={(x,y)|6.5≤x≤7.5,7≤x≤7.5}
而事件“小明的父亲能拿到报纸”(事件A)的基本事件可由图中阴影部分表示
∵SΩ=
1
2
×1=
1
2
,S=
1
2
-
1
2
×
1
2
×
1
2
=
3
8

∴P(A)=
3
4

(ii) 依题意得,X~B(5,
3
4

∴EX=5×
3
4
=
15
4

故小明的父亲一周5天(假日除外)能取到报纸的天数X的数学期望为
15
4
点评:本题主要考查了众数的概念,以及频率分布直方图和离散型随机变量的概率分布,同时考查了识图能力和计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•莆田模拟)若点(m,n)在直线4x+3y-10=0上,则m2+n2的最小值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•莆田模拟)如图,F是抛物线E:y2=2px(p>0)的焦点,A是抛物线E上任意一点.现给出下列四个结论:
①以线段AF为直径的圆必与y轴相切;
②当点A为坐标原点时,|AF|为最短;
③若点B是抛物线E上异于点A的一点,则当直线AB过焦点F时,|AF|+|BF|取得最小值;
④点B、C是抛物线E上异于点A的不同两点,若|AF|、|BF|、|CF|成等差数列,则点A、B、C的横坐标亦成等差数列.
其中正确结论的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•莆田模拟)已知函数f(x)=lnx+x2-mx.
(1)若m=3,求函数f(x)的极小值;
(2)若函数f(x)在定义域内为增函数,求实数m的取值范围;
(3)若m=1,△ABC的三个顶点A(x1,y1),B(x2,y2),C(x3,y3)在函数f(x)的图象上,且x1<x2<x3,a、b、c分别为△ABC的内角A、B、C所对的边.求证:a2+c2<b2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•莆田模拟)若实数a,b,c使得函数f(x)=x3+ax2+bx+c的三个零点分别为椭圆、双曲线、抛物线的离心率e1,e2,e3,则a,b,c的一种可能取值依次为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•莆田模拟)由函数f(x)=ex-e的图象,直线x=2及x轴所围成的图象面积等于(  )

查看答案和解析>>

同步练习册答案