【题目】设为奇函数,为常数.
(1)求的值;
(2)判断函数在上的单调性,并说明理由;
(3)若对于区间上的每一个值,不等式恒成立,求实数的取值范围.
【答案】(1);(2)增函数,见解析;(3).
【解析】
(1)由奇函数的定义求得a值,
(2)根据单调性的定义及复合函数单调性的判定方法可判断f(x)的单调性;
(3)不等式f(x)恒成立,等价于f(x)m恒成立,构造函数g(x)=f(x),x∈,转化为求函数g(x)在上的最值问题即可解决.
(1)∵为奇函数,
∴对定义域内的任意都成立,
∴,
∴,
解得或(舍去).
(2)函数在上单调递增,理由如下
由(1)知,∵中,
的内函数在上为减函数,
外函数为减函数,
故在上为增函数
而在上为增函数,
∴在上为增函数,
(3)令,,∵在上是减函数,
∴由(2)知,,是增函数,∴,
∵对于区间上的每一个值,不等式恒成立,
即恒成立,∴.
科目:高中数学 来源: 题型:
【题目】从4名男生和2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选3人中女生的人数.
(1)求所选3人中女生人数ξ≤1的概率;
(2)求ξ的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等比数列{an}的各项均为不等于1的正数,数列{bn}满足bn=lgan,b3=18,b6=12,则数列{bn}的前n项和的最大值等于( )
A. 126 B. 130 C. 132 D. 134
【答案】C
【解析】
由题意可知,lga3=b3,lga6=b6再由b3,b6,用a1和q表示出a3和b6,进而求得q和a1,根据{an}为正项等比数列推知{bn}为等差数列,进而得出数列bn的通项公式和前n项和,可知Sn的表达式为一元二次函数,根据其单调性进而求得Sn的最大值.
由题意可知,lga3=b3,lga6=b6.
又∵b3=18,b6=12,则a1q2=1018,a1q5=1012,
∴q3=10﹣6.
即q=10﹣2,∴a1=1022.
又∵{an}为正项等比数列,
∴{bn}为等差数列,
且d=﹣2,b1=22.
故bn=22+(n﹣1)×(﹣2)=﹣2n+24.
∴Sn=22n+×(﹣2)
=﹣n2+23n=,又∵n∈N*,故n=11或12时,(Sn)max=132.
故答案为:C.
【点睛】
这个题目考查的是等比数列的性质和应用;解决等差等比数列的小题时,常见的思路是可以化基本量,解方程;利用等差等比数列的性质解决题目;还有就是如果题目中涉及到的项较多时,可以观察项和项之间的脚码间的关系,也可以通过这个发现规律。
【题型】单选题
【结束】
12
【题目】已知数列是递增数列,且对,都有,则实数的取值范围是
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数图象相邻两条对称轴之间的距离为,将函数的图象向左平移个单位,得到的图象关于轴对称,则( )
A. 函数的周期为 B. 函数图象关于点对称
C. 函数图象关于直线对称 D. 函数在上单调
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)若在函数的定义域内存在区间,使得函数在区间上为减函数,求实数的取值范围;
(2)当时,若曲线: 在点处的切线与曲线有且只有一个公共点,求的值或取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某小组为了研究昼夜温差对一种稻谷种子发芽情况的影响,他们分别记录了4月1日至4月5日的每天星夜温差与实验室每天每100颗种子的发芽数,得到如下资料:
日期 | 4月1日 | 4月2日 | 4月3日 | 4月4日 | 4月5日 |
温差 | 9 | 10 | 11 | 8 | 12 |
发芽数(颗) | 38 | 30 | 24 | 41 | 17 |
利用散点图,可知线性相关。
(1)求出关于的线性回归方程,若4月6日星夜温差,请根据你求得的线性同归方程预测4月6日这一天实验室每100颗种子中发芽颗数;
(2)若从4月1日 4月5日的五组实验数据中选取2组数据,求这两组恰好是不相邻两天数据的概率.
(公式:)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com