精英家教网 > 高中数学 > 题目详情

【题目】为抛物线上的两点,的中点的纵坐标为4,直线的斜率为.

(1)求抛物线的方程;

(2)已知点为抛物线(除原点外)上的不同两点,直线的斜率分别为,且满足,记抛物线处的切线交于点,若点的中点的纵坐标为8,求点的坐标.

【答案】(1)(2)

【解析】

(1)根据题意运用点差法”求得p,得出抛物线方程;

(2)据题意设,根据题意,以及、的中点的纵坐标为8求出A、B两点的坐标,再设出PA、PB的直线,联立方程求得PA、PB直线方程,求出S坐标.

解:(1)设.

直线的斜率为

都在抛物线上,

所以.

由两式相减得

两边同除以,且由已知得.

可得,即.

所以抛物线的方程为.

(2)设.

因为

所以,所以

线段的中点的纵坐标为8,

联立解得

所以.

设直线的斜率为,则直线

.

,得,即.

所以直线

同理得直线.

联立以上两个方程解得

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在直角坐标系中,直线的参数方程为为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)若时,求的交点坐标;

(2)若上的点到距离的最大值为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数.

1)若方程两个根之和为4,两根之积为3,且过点(2,1).的解集;

2)若关于的不等式的解集为.

(ⅰ)求解关于的不等式

(ⅱ)设函数,求函数的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某亲子游戏结束时有一项抽奖活动,抽奖规则是:盒子里面共有5个小球,小球上分别写有0,1,2,3,4的数字,小球除数字外其它完全相同,每对亲子中,家长先从盒子中取出一个小球,记下数字后将小球放回,孩子再从盒子中取出一个小球,记下小球上数字将小球放回.抽奖活动的奖励规则是:①若取出的两个小球上数字之积大于8,则奖励飞机玩具一个;②若取出的两个小球上数字之积在区间上,则奖励汽车玩具一个;③若取出的两个小球上数字之积小于2,则奖励饮料一瓶.

(1)求每对亲子获得飞机玩具的概率;

(2)试比较每对亲子获得汽车玩具与获得饮料的概率,哪个更大?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为促进农业发展,加快农村建设,某地政府扶持兴建了一批“超级蔬菜大棚”.为了解大棚的面积与年利润之间的关系,随机抽取了其中的7个大棚,并对当年的利润进行统计整理后得到了如下数据对比表:

大棚面积(亩)

4.5

5.0

5.5

6.0

6.5

7.0

7.5

年利润(万元)

6

7

7.4

8.1

8.9

9.6

11.1

由所给数据的散点图可以看出,各样本点都分布在一条直线附近,并且有很强的线性相关关系.

(Ⅰ)求关于的线性回归方程;

(Ⅱ)小明家的“超级蔬菜大棚”面积为8.0亩,估计小明家的大棚当年的利润为多少;

(Ⅲ)另外调查了近5年的不同蔬菜亩平均利润(单位:万元),其中无丝豆为:1.5,1.7,2.1,2.2,2.5;彩椒为:1.8,1.9,1.9,2.2,2.2,请分析种植哪种蔬菜比较好?

参考数据: .

参考公式: .

【答案】(Ⅰ).(Ⅱ)大约为11.442万元.(Ⅲ)种植彩椒比较好.

【解析】试题分析】(I)利用回归直线方程计算公式计算出回归直线方程.(II)代入求得当年利润的估计值.(III)通过计算平均数和方差比较种植哪种蔬菜好.

试题解析】

(Ⅰ)

那么回归方程为: .

(Ⅱ)将代入方程得

,即小明家的“超级大棚”当年的利润大约为11.442万元.

(Ⅲ)近5年来,无丝豆亩平均利润的平均数为

方差 .

彩椒亩平均利润的平均数为

方差为 .

因为 ,∴种植彩椒比较好.

型】解答
束】
19

【题目】如图,四棱锥中, 为等边三角形,且平面平面.

(Ⅰ)证明:

(Ⅱ)若棱锥的体积为,求该四棱锥的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司试销一种成本单价为500元的新产品,规定试销时销售单价不低于成本单价,又不高于800元.经试销调查,发现销售量y()与销售单价x()之间的关系可近似看作一次函数ykxb(k≠0),函数图象如图所示.

(1)根据图象,求一次函数ykxb(k≠0)的表达式;

(2)设公司获得的毛利润(毛利润=销售总价-成本总价)S元.试问销售单价定为多少时,该公司可获得最大毛利润?最大毛利润是多少?此时的销售量是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,若输出的值为4,则判断框中应填入的条件是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若函数上有最大值,求实数的值;

(2)若方程上有解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,以2为半径的半圆弧所在平面垂直于矩形所在平面,是圆弧上异于的点.

(1)证明:平面平面

(2)当四棱锥的体积最大为8时,求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

同步练习册答案