【题目】已知图一是四面体ABCD的三视图,E是AB的中点,F是CD的中点.
(1)求四面体ABCD的体积;
(2)求EF与平面ABC所成的角.
【答案】
(1)解:由三视图可知AD⊥平面BCD,BD⊥CD,
AD=1,CD=BD=2,
∴四面体ABCD的体积V= = =
(2)解:∵E是AB的中点,F是CD的中点,
∴E到平面BCD的距离为 AD= ,S△BCF= S△BCD= =1,
∴VE﹣BCF= = = .
由勾股定理得AB=AC= ,BC=2 ,∴△ABC的BC边上的高为 = ,
∴S△ABC= = ,∴S△BCE= S△ABC= ,
设F到平面ABC的距离为h,则VF﹣BCE= = ,
又VE﹣BCF=VF﹣BCE,∴ = ,解得h= .
连结DE,则DE= AB= ,∴EF= = ,
设EF与平面ABC所成的角为θ,则sinθ= = .
∴EF与平面ABC所成的角为arcsin
【解析】(1)根据三视图得出棱锥的结构特征和棱长,代入体积公式计算;(2)通过VE﹣BCF=VF﹣BCE得出F到平面ABC的距离,利用线面角的定义即可得出线面角的正弦值,从而得出所求线面角的大小.
【考点精析】解答此题的关键在于理解空间角的异面直线所成的角的相关知识,掌握已知为两异面直线,A,C与B,D分别是上的任意两点,所成的角为,则.
科目:高中数学 来源: 题型:
【题目】已知数列{an}中,a2=2,其前n项和Sn满足: (n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若 ,求数列{bn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=eax(a≠0).
(1)当 时,令 (x>0),求函数g(x)在[m,m+1](m>0)上的最小值;
(2)若对于一切x∈R,f(x)﹣x﹣1≥0恒成立,求a的取值集合;
(3)求证: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】用数学归纳法证明1+2+3+…+n2= ,则当n=k+1时左端应在n=k的基础上加上( )
A.k2+1
B.(k+1)2
C.
D.(k2+1)+(k2+2)+(k2+3)+…+(k+1)2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重.大气污染可引起心悸、呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机的对入院50人进行了问卷调查得到了如下的列联表:
患心肺疾病 | 不患心肺疾病 | 合计 | |
男 | 5 | ||
女 | 10 | ||
合计 | 50 |
已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为 .
(Ⅰ)请将上面的列联表补充完整;
(Ⅱ)是否有99.5%的把握认为患心肺疾病与性别有关?说明你的理由;
(Ⅲ)已知在患心肺疾病的10位女性中,有3位又患胃病.现在从患心肺疾病的10位女性中,选出3名进行其他方面的排查,记选出患胃病的女性人数为ξ,求ξ的分布列,数学期望以及方差;大气污染会引起各种疾病,试浅谈日常生活中如何减少大气污染.
下面的临界值表供参考:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式K2= 其中n=a+b+c+d)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在R上的函数y=f(x)满足:①对于任意的x∈R,都有f(x+2)=f(x﹣2);②函数y=f(x+2)是偶函数;③当x∈(0,2]时,f(x)=ex﹣ ,a=f(﹣5),b=f( ).c=f( ),则a,b,c的大小关系是( )
A.a<b<c
B.c<a<b
C.c<a<b
D.b<a<c
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数f(x)= sin(2x+φ)(|φ|< )的图象关于直线x= 对称,且当x1 , x2∈(﹣ ,﹣ ),x1≠x2时,f(x1)=f(x2),则f(x1+x2)等于( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com