精英家教网 > 高中数学 > 题目详情

已知p:方程x2+mx+1=0有两个不等的负根;q:方程x2+(m-2)x+1=0无实根.若p∨q为真,p∧q为假,求m的取值范围.

解:p满足m2-4>0,x1+x2=-m<0,x1x2=1>0.
解出得m>2; (2分)
q满足[(m-1)]2-4<0
解出得0<m<4(4分)
又因为“p或q”为真,“p且q”为假
所以m∈(0,2]∪[4,+∞)(6分)
分析:根据韦达定理(一元二次方程根与系数的关系)我们可以求出命题p和命题q为真是参数m的范围,根据p∨q为真,p∧q为假,则p,q一真一假,构造不等式组,即可求出满足条件的m的取值范围.
点评:本题考查的知识点是复合命题的真假,其中根据韦达定理(一元二次方程根与系数的关系)我们可以求出命题p和命题q为真是参数m的范围,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知p:方程x2+mx+1=0有两个不等的负实根,q:方程4x2+4(m-2)x+1=0无实根.若“p或q”为真,“p且q”为假.求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

24、已知p:方程x2+mx+1=0有两个不等的负根;q:方程x2+(m-2)x+1=0无实根.若p∨q为真,p∧q为假,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知p:方程x2+mx+1=0有两个不等的负实根;q:对任意实数x不等式4x2+4(m-2)x+1>0恒成立,若p或q为真,p且q为假,求实数m的取值范围..

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知p:25x2-10x+1-a2>0(a≥0),q:2x2-3x+1>0,若p是q成立的充分不必要条件,求实数a的取值范围.
(2)已知p:方程x2+mx+1=0有两不相等的负实数根;q:方程4x2+4(m-2)x+1=0无实根,若p∨q为真,p∧q为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P:方程x2+mx+1=0有两个不等的实数根,Q:方程4x2+4(m-2)x+1=0无实根.若P∨Q为真,P∧Q为假,求实数m的取值范围.

查看答案和解析>>

同步练习册答案