精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=x2-1,函数g(x)=2tlnx,其中t≤1.
(Ⅰ)如果函数f(x)与g(x)在x=1处的切线均为l,求切线l的方程及t的值;
(Ⅱ)如果曲线y=f(x)与y=g(x)有且仅有一个公共点,求t的取值范围.

分析 (Ⅰ)分别求得f(x),g(x)的导数,求得切线的斜率,解方程可得t=1,即可得到切线的斜率和切点坐标,可得切线的方程;
(Ⅱ)设函数h(x)=f(x)-g(x),“曲线y=f(x)与y=g(x)有且仅有一个公共点”等价于“函数y=h(x)有且仅有一个零点”.对h(x)求导,讨论①当t≤0时,②当t=1时,③当0<t<1时,求出单调区间,即可得到零点和所求范围.

解答 解:(Ⅰ)求导,得f′(x)=2x,$g'(x)=\frac{2t}{x}$,(x>0).                  
由题意,得切线l的斜率k=f′(1)=g′(1),
即k=2t=2,解得t=1.
又切点坐标为(1,0),
所以切线l的方程为2x-y-2=0;         
(Ⅱ)设函数h(x)=f(x)-g(x)=x2-1-2tlnx,x∈(0,+∞).      
“曲线y=f(x)与y=g(x)有且仅有一个公共点”等价于
“函数y=h(x)有且仅有一个零点”.
求导,得$h'(x)=2x-\frac{2t}{x}=\frac{{2{x^2}-2t}}{x}$.
①当t≤0时,由x∈(0,+∞),得h'(x)>0,
所以h(x)在(0,+∞)单调递增.
又因为h(1)=0,所以y=h(x)有且仅有一个零点1,符合题意.   
②当t=1时,当x变化时,h'(x)与h(x)的变化情况如下表所示:

x(0,1)1(1,+∞)
h'(x)-0+
h(x)
所以h(x)在(0,1)上单调递减,在(1,+∞)上单调递增,
所以当x=1时,h(x)min=h(1)=0,
故y=h(x)有且仅有一个零点1,符合题意.                  
③当0<t<1时,令h'(x)=0,解得$x=\sqrt{t}$.
当x变化时,h'(x)与h(x)的变化情况如下表所示:
x$(0,\sqrt{t})$$\sqrt{t}$$(\sqrt{t},+∞)$
h'(x)-0+
h(x)
所以h(x)在$(0,\sqrt{t})$上单调递减,在$(\sqrt{t},+∞)$上单调递增,
所以当$x=\sqrt{t}$时,$h(x){\;_{min}}=h(\sqrt{t})$.                          
因为h(1)=0,$\sqrt{t}<1$,且h(x)在$(\sqrt{t},+∞)$上单调递增,
所以$h(\sqrt{t})<h(1)\;=0$.
又因为存在${e^{-\frac{1}{2t}}}∈(0,1)$,$h({e^{-\frac{1}{2t}}})\;={e^{-\frac{1}{t}}}-1-2tln{e^{-\frac{1}{2t}}}={e^{-\frac{1}{t}}}>0$,
所以存在x0∈(0,1)使得h(x0)=0,
所以函数y=h(x)存在两个零点x0,1,与题意不符.
综上,曲线y=f(x)与y=g(x)有且仅有一个公共点时,t的范围是{t|t≤0,或t=1}.

点评 本题考查导数的运用:求切线的方程和单调区间、极值和最值,考查函数的零点问题的解法,注意运用构造法,通过导数求得单调性,同时考查分类讨论的思想方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.直线l过点P(-2,0)且倾斜角为1500,以直角坐标系的原点为极点,x轴正方向为极轴建立极坐标系,曲线C的极坐标方程为ρ2-2ρcosθ=15.
(1)写出直线l的参数方程和曲线C的直角坐标方程;
(2)直线l交曲线C于A,B两点,求|PA|+|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,四棱锥P-ABCD的底面ABCD为菱形,Q是棱PA的中点.
(Ⅰ)求证:PC∥平面BDQ;
(Ⅱ)若PB=PD,求证:平面PAC⊥平面BDQ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设命题p:“若$sinα=\frac{1}{2}$,则$α=\frac{π}{6}$”,命题q:“若a>b,则$\frac{1}{a}<\frac{1}{b}$”,则(  )
A.“p∧q”为真命题B.“p∨q”为假命题C.“¬q”为假命题D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.现有5名教师要带3个兴趣小组外出学习考察,要求每个兴趣小组的带队教师至多2人,但其中甲教师和乙教师均不能单独带队,则不同的带队方案有54种.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}是等比数列,并且a1,a2+1,a3是公差为-3的等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=a2n,记Sn为数列{bn}的前n项和,证明:${S_n}<\frac{16}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知非零向量$\overrightarrow{a}$,$\overrightarrow{b}$夹角为45°,且|$\overrightarrow{a}$|=2,|$\overrightarrow{a}$-$\overrightarrow{b}$|=2.则|$\overrightarrow{b}$|等于(  )
A.2$\sqrt{2}$B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知a≥0,b≥0,a2+b2=1,求证:ab+b≥$\frac{3\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.现代产品的销售离不开广告的促销活动,某公司代理一种国际品牌智能环境检测设备,其广告费用x(单位:万元)与年销售量t(单位:件)的统计数据如表所示:
广告费用x(万元) 3 4 5 6
 年销售量t(件) 25 30 4045
这里所给出的数据表示t对x呈线性回归关系$\stackrel{∧}{t}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$.
[参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$].
(1)根据所给数据求出线性回归方程;
(2)将(1)中的$\stackrel{∧}{t}$近似地看作产品的实际年销售量t,若该产品的销售单价g(x)(单位:万元)与广告费x的近似关系是g(x)=$\left\{\begin{array}{l}{17-2x(x∈{N}^{*},且1≤x≤5)}\\{6-\frac{2}{x}(x∈{N}^{*},且6≤x≤10)}\end{array}\right.$试问当公司投入广告费用多少万元时,公司每年获得的销售收入最大,最大销售收入是多少万元?

查看答案和解析>>

同步练习册答案