ÔÚÊýÁÐ{an}ÖУ¬Èôan2-an-12=p£¨n¡Ý2£¬n¡ÊN¡Á£¬pΪ³£Êý£©£¬Ôò³Æ{an}Ϊ¡°µÈ·½²îÊýÁС±£¬ÏÂÁÐÊǶԡ°µÈ·½²îÊýÁС±µÄÅжϣ»
¢ÙÈô{an}Êǵȷ½²îÊýÁУ¬Ôò{an2}ÊǵȲîÊýÁУ»
¢Ú{£¨-1£©n}Êǵȷ½²îÊýÁУ»
¢ÛÈô{an}Êǵȷ½²îÊýÁУ¬Ôò{akn}£¨k¡ÊN*£¬kΪ³£Êý£©Ò²Êǵȷ½²îÊýÁУ»
¢ÜÈô{an}¼ÈÊǵȷ½²îÊýÁУ¬ÓÖÊǵȲîÊýÁУ¬Ôò¸ÃÊýÁÐΪ³£ÊýÁУ®
ÆäÖÐÕýÈ·ÃüÌâÐòºÅΪ
 
£®£¨½«ËùÓÐÕýÈ·µÄÃüÌâÐòºÅÌîÔÚºáÏßÉÏ£©
·ÖÎö£º¸ù¾ÝµÈ²îÊýÁеÄÐÔÖʼ°ÌâÖеĵȷ½²îÊýÁеÄж¨Ò壬¼´¿ÉÅжϳöÕýÈ·µÄ´ð°¸£®
½â´ð£º½â£º¢ÙÒòΪ{an}Êǵȷ½²îÊýÁУ¬ËùÒÔan2-an-12=p£¨n¡Ý2£¬n¡ÊN¡Á£¬pΪ³£Êý£©³ÉÁ¢£¬
µÃµ½{an2}ΪÊ×ÏîÊÇa12£¬¹«²îΪpµÄµÈ²îÊýÁУ»
¢ÚÒòΪan2-an-12=£¨-1£©2n-£¨-1£©2n-1=1-£¨-1£©=2£¬ËùÒÔÊýÁÐ{£¨-1£©n}Êǵȷ½²îÊýÁУ»
¢ÛÊýÁÐ{an}ÖеÄÏîÁоٳöÀ´ÊÇ£ºa1£¬a2£¬¡­£¬ak£¬ak+1£¬ak+2£¬¡­£¬a2k£¬¡­£¬a3k£¬¡­
ÊýÁÐ{akn}ÖеÄÏîÁоٳöÀ´ÊÇ£ºak£¬a2k£¬a3k£¬¡­
ÒòΪak+12-ak2=ak+22-ak+12=ak+32-ak+22=¡­=a2k2-ak2=p
ËùÒÔ£¨ak+12-ak2£©+£¨ak+22-ak+12£©+£¨ak+32-ak+22£©+¡­+£¨a2k2-a2k-12£©=a2k2-ak2=kp£¬
ÀàËƵØÓÐakn2-akn-12=akn-12-akn-22=¡­=akn+32-akn+22=akn+22-akn+12=akn+12-akn2=p
ͬÉÏÁ¬¼Ó¿ÉµÃakn+12-akn2=kp£¬ËùÒÔ£¬ÊýÁÐ{akn}Êǵȷ½²îÊýÁУ»
¢Ü{an}¼ÈÊǵȷ½²îÊýÁУ¬ÓÖÊǵȲîÊýÁУ¬ËùÒÔan2-an-12=p£¬ÇÒan-an-1=d£¨d¡Ù0£©£¬ËùÒÔan+an-1=
p
d
£¬ÁªÁ¢½âµÃan=
d
2
+
p
2d
£¬
ËùÒÔ{an}Ϊ³£ÊýÁУ¬µ±d=0ʱ£¬ÏÔÈ»{an}Ϊ³£ÊýÁУ¬ËùÒÔ¸ÃÊýÁÐΪ³£ÊýÁУ®
×ÛÉÏ£¬ÕýÈ·´ð°¸µÄÐòºÅΪ£º¢Ù¢Ú¢Û¢Ü
¹Ê´ð°¸Îª£º¢Ù¢Ú¢Û¢Ü
µãÆÀ£º´ËÌ⿼²éѧÉúÁé»îÔËÓõȲîÊýÁеÄÐÔÖʼ°Ð¶¨ÒåµÈ·½²îÊýÁл¯¼òÇóÖµ£¬ÊÇÒ»µÀÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚÊýÁÐ{an}ÖУ¬Èôa1=
1
2
£¬an=
1
1-an-1
£¨n¡Ý2£¬n¡ÊN*£©£¬Ôòa2010µÈÓÚ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚÊýÁÐ{an}ÖУ¬Èôan2-an-12=p£¨n¡Ý2£¬n¡ÊN*£¬pΪ³£Êý£©£¬Ôò³Æ{an}Ϊ¡°µÈ·½²îÊýÁС±£¬ÏÂÁÐÊǶԡ°µÈ·½²îÊýÁС±µÄÅжϣ»
¢ÙÈô{an}Êǵȷ½²îÊýÁУ¬Ôò{an2}ÊǵȲîÊýÁУ»
¢Ú{£¨-1£©n}Êǵȷ½²îÊýÁУ»
¢ÛÈô{an}Êǵȷ½²îÊýÁУ¬Ôò{akn}£¨k¡ÊN*£¬kΪ³£Êý£©Ò²Êǵȷ½²îÊýÁУ»
¢ÜÈô{an}¼ÈÊǵȷ½²îÊýÁУ¬ÓÖÊǵȲîÊýÁУ¬Ôò¸ÃÊýÁÐΪ³£ÊýÁУ®
ÆäÖÐÕýÈ·ÃüÌâÐòºÅΪ£¨¡¡¡¡£©
A¡¢¢Ù¢Ú¢ÛB¡¢¢Ù¢Ú¢ÜC¡¢¢Ù¢Ú¢Û¢ÜD¡¢¢Ú¢Û¢Ü

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚÊýÁÐ{an}ÖУ¬Èôa1=2£¬an=
1
1-an-1
(n¡Ý2£¬n¡ÊN*)£¬Ôòa7
µÈÓÚ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚÊýÁÐ{an}ÖУ¬Èôa1=2£¬a2=6£¬ÇÒµ±n¡ÊN*ʱ£¬an+2ÊÇan•an+1µÄ¸öλÊý×Ö£¬Ôòa2011=£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÎÞÇîÊýÁÐ{an}¾ßÓÐÈçÏÂÐÔÖÊ£º¢Ùa1ΪÕýÕûÊý£»¢Ú¶ÔÓÚÈÎÒâµÄÕýÕûÊýn£¬µ±anΪżÊýʱ£¬an+1=
a n
2
£»µ±anΪÆæÊýʱ£¬an+1=
an+1
2
£®ÔÚÊýÁÐ{an}ÖУ¬Èôµ±n¡Ýkʱ£¬an=1£¬µ±1¡Ün£¼kʱ£¬an£¾1£¨k¡Ý2£¬k¡ÊN*£©£¬ÔòÊ×Ïîa1¿ÉÈ¡ÊýÖµµÄ¸öÊýΪ
 
£¨ÓÃk±íʾ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸