精英家教网 > 高中数学 > 题目详情

【题目】如图,在正四棱锥中,分别是的中点,动点在线段上运动时,下列四个结论中恒成立的为( .

A.B.C.D.

【答案】AC

【解析】

如图所示,连接相交于点,连接,由正四棱锥性质可得底面,,进而得到,可得平面,利用三角形的中位线结合面面平行判定定理得平面平面,进而得到平面,随即可判断A;由异面直线的定义可知不可能;由A易得C正确;由A同理可得:平面,可用反证法可说明D.

如图所示,连接相交于点,连接.

由正四棱锥,可得底面,所以.

因为,所以平面

因为分别是的中点,

所以,而

所以平面平面,所以平面,所以,故A正确;

由异面直线的定义可知:是异面直线,不可能,因此B不正确;

平面平面,所以平面,因此C正确;

平面,若平面,则,与相矛盾,

因此当不重合时,与平面不垂直,即D不正确.

故选:AC.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆)的离心率为,右焦点为,斜率为1的直线与椭圆交于两点,以为底边作等腰三角形,顶点为

1)求椭圆的方程;

2)求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1) 讨论的单调性;

(2) ,当时, ,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小李从网上购买了一件商品,快递员计划在下午5:00-6:00之间送货上门,已知小李下班到家的时间为下午5:30-6:00.快递员到小李家时,如果小李未到家,则快递员会电话联系小李.若小李能在10分钟之内到家,则快递员等小李回来;否则,就将商品存放在快递柜中.则小李需要去快递柜收取商品的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点和动点,以线段为直径的圆内切于圆.

(1)求动点的轨迹方程;

(2)已知点 ,经过点的直线与动点的轨迹交于 两点,求证:直线与直线的斜率之和为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班级甲、乙两个小组各有10位同学,在一次期中考试中,两个小组同学的数学成绩如下:

甲组:94,69,73,86,74,75,86,88,97,98;

乙组:75,92,82,80,95,81,83,91,79,82.

画出这两个小组同学数学成绩的茎叶图,判断哪一个小组同学的数学成绩差异较大,并说明理由;

从这两个小组数学成绩在90分以上的同学中,随机选取2人在全班介绍学习经验,求选出的2位同学不在同一个小组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据说伟大的阿基米德逝世后,敌军将领马塞拉斯给他建了一块墓碑,在墓碑上刻了一个如图所示的图案,图案中球的直径、圆柱底面的直径和圆柱的高相等,圆锥的顶点为圆柱上底面的圆心,圆锥的底面是圆柱的下底面.

1)试计算出图案中圆柱与球的体积比;

2)假设球半径.试计算出图案中圆锥的体积和表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学在生物研究性学习中,对春季昼夜温差大小与黄豆种子发芽多少之间的关系进行研究,于是他在4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天每100颗种子浸泡后的发芽数,得到如下资料:

日期

4月1日

4月7日

4月15日

4月21日

4月30日

温差

10

11

13

12

8

发芽数/颗

23

25

30

26

16

(1)从这5天中任选2天,求这2天发芽的种子数均不小于25的概率;

(2)从这5天中任选2天,若选取的是4月1日与4月30日的两组数据,请根据这5天中的另三天的数据,求出关于的线性回归方程

(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?

附:回归直线的斜率和截距的最小二乘估计公式分别为 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体中,点分别为的中点,则下列说法正确的是______.

平面平面

平面平面

查看答案和解析>>

同步练习册答案