精英家教网 > 高中数学 > 题目详情
关于x的不等式
1
x2-2kx+k2+k-1
>0的解集为{x|x≠k,x∈R},则实数k=
 
考点:其他不等式的解法
专题:不等式的解法及应用
分析:根据不等式的性质,即可得到结论.
解答: 解:∵不等式
1
x2-2kx+k2+k-1
>0的解集为{x|x≠k,x∈R},
∴当x=k时,分母x2-2kx+k2+k-1=0,
即k2-2k2+k2+k-1=0,
即k=1,
当k=1时,不等式
1
x2-2x+1
=
1
(x-1)2
>0的解集为{x|x≠1,x∈R},满足条件,
故答案为:1
点评:本题主要考查不等式的求解和应用,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

关于x的方程x2-(2+i)x-2ab+(a+b)i=0(a、b∈R)有实数解
(1)求a、b取值范围
(2)求实根的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥S-ABCD中,底面ABCD是正方形,SA⊥底面ABCD,SA=AB=2,点M是SD的中点,AN⊥SC,且交SC于点N.
(Ⅰ)求证:SB∥平面ACM;
(Ⅱ)求证:直线SC⊥平面AMN;
(Ⅲ)求直线CM与平面AMN所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若a1,a2∈R+,则有不等式
(a1)2+(a2)2
2
≥(
a1+a2
2
2成立,请你类比推广此性质.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项均为正数的数列{an}的前项和{an}满足:4Sn=an2+2an
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)令bn=
16(n+1)
(n+2)2
a
2
n
,数列{bn}的前n项和为Tn.证明:对于任意的n∈N*,都有Tn
5
4

查看答案和解析>>

科目:高中数学 来源: 题型:

计算曲线y=
x
及直线x=1和x轴所围曲边三角形的面积时,可将区间[0,1]等分为若干个小区间,并以直代曲得到若干个乍边矩形,其面积表示为
x
•△x,当区间[0,1]无限细分时,这些矩形的面积之和将趋近于曲边三角形的面积,且面积S=
1
0
x
dx,类比曲边三角形面积的求法,计算曲线y=
x
及直线x=1和x轴所围曲边三角形绕x轴旋转360°所旋转体的体积,则体积V可以表示为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若对任意的x∈[a,b],都有|f(x)-g(x)|≤k(k>0),则称f(x)与g(x)在[a,b]上是“k度和谐函数”,[a,b]称为“k度密切区间”.设函数f(x)=lnx与g(x)=
mx-1
x
在[
1
e
,e]上是“e度和谐函数”,则m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC顶点A(1,4),角B,C平分线方程为l1:x+y-1=0和l2:x-2y=0,求边BC所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a、b、c分别是角A、B、C的对边,且
cosB
cosC
=
b
2a+c

(Ⅰ)求角B的大小;
(Ⅱ)若b=
13
,a+c=6,求△ABC的面积.

查看答案和解析>>

同步练习册答案