精英家教网 > 高中数学 > 题目详情
14.设f(x)=xlnx+2015,若f′(x0)=2,则x0=(  )
A.e2B.eC.$\frac{ln2}{2}$D.ln2

分析 先求出f′(x)=lnx+1,再由f′(x0)=2,能求出x0=e.

解答 解:∵f(x)=xlnx+2015,
∴f′(x)=lnx+1,
∵f′(x0)=2,
∴lnx0+1=2,解得x0=e.
故选:B.

点评 本题考查实数值的求法,是基础题,解题时要认真导数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.圆心在原点,半径为4的圆的方程为x2+y2=16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆Γ:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),过原点的两条直线l1和l2分别与C交于点A、B和C、D,得到平行四边形ACBD.
(1)若a=4,b=3,且ACBD为正方形时,求该正方形的面积S;
(2)若直线l1的方程为bx-ay=0,l1和l2关于y轴对称,Γ上任意一点P到l1和l2的距离分别为d1和d2,证明:d12+d22=$\frac{2{a}^{2}{b}^{2}}{{a}^{2}+{b}^{2}}$;
(3)当ACBD为菱形,且圆x2+y2=1内切于菱形ACBD时,求a,b满足的关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=asinx-bcosx(a、b为常数,a≠0,x∈R)在x=$\frac{π}{4}$处取得最小值,则函数y=|f($\frac{3π}{4}$-x)|是(  )
A.最大值为$\sqrt{2}$b且它的图象关于点(π,0)对称
B.最大值为$\sqrt{2}$a且它的图象关于点($\frac{3π}{4}$,0)对称
C.最大值为$\sqrt{2}$b且它的图象关于直线x=π对称
D.最大值为$\sqrt{2}$a且它的图象关于直线x=$\frac{3π}{4}$对称.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=loga(7-x),g(x)=loga(2x+1)(a>0且a≠1)
(1)若f(3)=2,求a的值;
(2)求函数F(x)=f(x)+g(x)的单调递增区间;
(3)若对任意的x∈[a,a+1],存在x0∈[1,5],使不等式f(x0)>g(x)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.10名运动员中有2名老队员和8名新队员,现从中选3人参加团体比赛,要求老队员至多1人入选且新队员甲不能入选的选法有(  )种.
A.77B.144C.35D.72

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=sin2x-cos2x的一个单调递增区间是(  )
A.$[-\frac{3π}{4},\frac{π}{4}]$B.$[-\frac{π}{4},\frac{3π}{4}]$C.$[-\frac{3π}{8},\frac{π}{8}]$D.$[-\frac{π}{8},\frac{3π}{8}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若点(2,-3)不在不等式组$\left\{\begin{array}{l}x-y≥0\\ x+y-2≤0\\ ax-y-1≤0\end{array}\right.$表示的平面区域内,则实数a的取值范围是(  )
A.(-∞,0)B.(-1,+∞)C.(0,+∞)D.(-∞,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在一圆上任取3点,这三点为顶点的三角形为钝角三角形的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.以上都不对

查看答案和解析>>

同步练习册答案