精英家教网 > 高中数学 > 题目详情

【题目】已知函数的图象关于直线对称,则正确的选项是( )

①.函数为奇函数

②.函数上单调递增

③.若,则的最小值为

④.函数的图象向右平移个单位长度得到函数的图象

A.①③B.①④C.①②③D.②③④

【答案】A

【解析】

根据关于直线对称及,解得,所以,对于①:,即可判断①正误;对于②:,所以,即可判断②正误;对于③:因为,结合题意,以及的周期,可得的最小值为半个周期,即可判断③正误;对于④,可得平移后的,即可判断④正误.

由题意关于对称,所以

,所以,所以

对于①:,为奇函数,故①正确;

对于②:,所以,所以函数上不单调,故②错误;

对于③:因为,结合题意,所以的最小值为半个周期,又,所以的最小值为,故③正确;

对于④:的图像向右平移个单位长度得到函数,故④错误.

故选:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数=lnx+ax2+(2a+1)x

(1)讨论的单调性;

(2)当a﹤0时,证明

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校位同学的数学与英语成绩如下表所示:

学号

数学成绩

英语成绩

学号

数学成绩

英语成绩

将这位同学的两科成绩绘制成散点图如下:

1)根据该校以往的经验,数学成绩与英语成绩线性相关.已知这名学生的数学平均成绩为,英语平均成绩为.考试结束后学校经过调查发现学号为同学与学号为同学(分别对应散点图中的)在英语考试中作弊,故将两位同学的两科成绩取消,取消两位作弊同学的两科成绩后,求其余同学的数学成绩与英语成绩的平均数;

2)取消两位作弊同学的两科成绩后,求数学成绩与英语成绩的线性回归方程,并据此估计本次英语考试学号为的同学如果没有作弊的英语成绩(结果保留整数).

附:位同学的两科成绩的参考数据:.

参考公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF⊥平面ABCD,点GAB的中点,AB=BE=2.

)求证:EG∥平面ADF

)求二面角OEFC的正弦值;

)设H为线段AF上的点,且AH=HF,求直线BH和平面CEF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市环保部门对该市市民进行了一次垃圾分类知识的网络问卷调查,每位市民仅有一次参加机会,通过随机抽样,得到参与问卷调查的100人的得分(满分:100分)数据,统计结果如表所示:

组别

2

3

5

15

18

12

0

5

10

10

7

13

(1)若规定问卷得分不低于70分的市民称为“环保关注者”,请完成答题卡中的列联表,并判断能否在犯错误概率不超过0.05的前提下,认为是否为“环保关注者”与性别有关?

(2)若问卷得分不低于80分的人称为“环保达人”.视频率为概率.

①在我市所有“环保达人”中,随机抽取3人,求抽取的3人中,既有男“环保达人”又有女“环保达人”的概率;

②为了鼓励市民关注环保,针对此次的调查制定了如下奖励方案:“环保达人”获得两次抽奖活动;其他参与的市民获得一次抽奖活动.每次抽奖获得红包的金额和对应的概率.如下表:

红包金额(单位:元)

10

20

概率

现某市民要参加此次问卷调查,记(单位:元)为该市民参加间卷调查获得的红包金额,求的分布列及数学期望.

附表及公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某网店经营的一种商品进行进价是每件10元,根据一周的销售数据得出周销售量(件)与单价(元)之间的关系如下图所示,该网店与这种商品有关的周开支均为25元.

(1)根据周销售量图写出(件)与单价(元)之间的函数关系式;

(2)写出利润(元)与单价(元)之间的函数关系式;当该商品的销售价格为多少元时,周利润最大?并求出最大周利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象中相邻两条对称轴之间的距离为,且直线是其图象的一条对称轴.

1)求的值;

2)在图中画出函数在区间上的图象;

3)将函数的图象上各点的横坐标缩短为原来的(纵坐标不变),再把得到的图象向左平移个单位,得到的图象,求单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1 试说明函数的图象是由函数的图象经过怎样的变换得到的;

2)若函数,试判断函数的奇偶性,并用反证法证明函数的最小正周期是

3)求函数的单调区间和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,离心率,点在椭圆上.

(1)求椭圆的方程;

(2)设过点且不与坐标轴垂直的直线交椭圆两点,线段的垂直平分线与轴交于点,求点的横坐标的取值范围;

(3)在第(2)问的条件下,求面积的最大值.

查看答案和解析>>

同步练习册答案