【题目】已知函数的图象关于直线对称,则正确的选项是( )
①.函数为奇函数
②.函数在上单调递增
③.若,则的最小值为
④.函数的图象向右平移个单位长度得到函数的图象
A.①③B.①④C.①②③D.②③④
科目:高中数学 来源: 题型:
【题目】某校位同学的数学与英语成绩如下表所示:
学号 | ||||||||||
数学成绩 | ||||||||||
英语成绩 | ||||||||||
学号 | ||||||||||
数学成绩 | ||||||||||
英语成绩 |
将这位同学的两科成绩绘制成散点图如下:
(1)根据该校以往的经验,数学成绩与英语成绩线性相关.已知这名学生的数学平均成绩为,英语平均成绩为.考试结束后学校经过调查发现学号为的同学与学号为的同学(分别对应散点图中的、)在英语考试中作弊,故将两位同学的两科成绩取消,取消两位作弊同学的两科成绩后,求其余同学的数学成绩与英语成绩的平均数;
(2)取消两位作弊同学的两科成绩后,求数学成绩与英语成绩的线性回归方程,并据此估计本次英语考试学号为的同学如果没有作弊的英语成绩(结果保留整数).
附:位同学的两科成绩的参考数据:,.
参考公式:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF⊥平面ABCD,点G为AB的中点,AB=BE=2.
(Ⅰ)求证:EG∥平面ADF;
(Ⅱ)求二面角OEFC的正弦值;
(Ⅲ)设H为线段AF上的点,且AH=HF,求直线BH和平面CEF所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市环保部门对该市市民进行了一次垃圾分类知识的网络问卷调查,每位市民仅有一次参加机会,通过随机抽样,得到参与问卷调查的100人的得分(满分:100分)数据,统计结果如表所示:
组别 | ||||||
男 | 2 | 3 | 5 | 15 | 18 | 12 |
女 | 0 | 5 | 10 | 10 | 7 | 13 |
(1)若规定问卷得分不低于70分的市民称为“环保关注者”,请完成答题卡中的列联表,并判断能否在犯错误概率不超过0.05的前提下,认为是否为“环保关注者”与性别有关?
(2)若问卷得分不低于80分的人称为“环保达人”.视频率为概率.
①在我市所有“环保达人”中,随机抽取3人,求抽取的3人中,既有男“环保达人”又有女“环保达人”的概率;
②为了鼓励市民关注环保,针对此次的调查制定了如下奖励方案:“环保达人”获得两次抽奖活动;其他参与的市民获得一次抽奖活动.每次抽奖获得红包的金额和对应的概率.如下表:
红包金额(单位:元) | 10 | 20 |
概率 |
现某市民要参加此次问卷调查,记(单位:元)为该市民参加间卷调查获得的红包金额,求的分布列及数学期望.
附表及公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某网店经营的一种商品进行进价是每件10元,根据一周的销售数据得出周销售量(件)与单价(元)之间的关系如下图所示,该网店与这种商品有关的周开支均为25元.
(1)根据周销售量图写出(件)与单价(元)之间的函数关系式;
(2)写出利润(元)与单价(元)之间的函数关系式;当该商品的销售价格为多少元时,周利润最大?并求出最大周利润.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的图象中相邻两条对称轴之间的距离为,且直线是其图象的一条对称轴.
(1)求,的值;
(2)在图中画出函数在区间上的图象;
(3)将函数的图象上各点的横坐标缩短为原来的(纵坐标不变),再把得到的图象向左平移个单位,得到的图象,求单调减区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1) 试说明函数的图象是由函数的图象经过怎样的变换得到的;
(2)若函数,试判断函数的奇偶性,并用反证法证明函数的最小正周期是;
(3)求函数的单调区间和值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为、,离心率,点在椭圆上.
(1)求椭圆的方程;
(2)设过点且不与坐标轴垂直的直线交椭圆于、两点,线段的垂直平分线与轴交于点,求点的横坐标的取值范围;
(3)在第(2)问的条件下,求面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com