精英家教网 > 高中数学 > 题目详情
已知AB分别是椭圆=1的右顶点和上顶点,动点C在该椭圆上运动,求△ABC的重心G的轨迹的普通方程.

解析:本题有两种思考方式,求解时把点C的坐标设为一般的(x1,y1)的形式或根据它在该椭圆上运动也可以设为(6cosθ,3sinθ)的形式,从而予以求解.

解:由动点C在该椭圆上运动,故据此可设点C的坐标为(6cosθ,3sinθ),点G的坐标为(x,y),则由题意可知点A(6,0)、B(0,3).?

由重心坐标公式可知

由此消去θ得到+(y-1)2=1,即为所求.

点评:本题的解法体现了椭圆的参数方程对于解决相关问题的优越性.运用参数方程显得很简单,运算更简便.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知A、B分别是椭圆
x2
a2
+
y2
b2
=1
的左右两个焦点,O为坐标原点,点P(-1,
2
2
)在椭圆上,线段PB与y轴的交点M为线段PB的中点.
(1)求椭圆的标准方程;
(2)点C是椭圆上异于长轴端点的任意一点,对于△ABC,求
sinA+sinB
sinC
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B分别是椭圆C:
x2
a2
+
y2
b2
=1,(a>b>0)
的左右顶点,F1是椭圆C的左焦点,|AF1|=2-
3
,离心率e=
3
2

(1)求椭圆C的方程;
(2)设P为椭圆C上异于A,B的任意一点,且PH⊥x轴,H为垂足,延长HP到点Q使得|HP|=|PQ|,连接AQ,并延长AQ交直线l:x=2于M点,N为MB中点,求
OQ
QN
的值,并判断以O为圆心,OQ为半径的圆与直线QN的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B分别是椭圆C1
x2
a2
+
y2
b2
=1的左、右顶点,P是椭圆上异与A,B的任意一点,Q是双曲线C2
x2
a2
-
y2
b2
=1上异与A,B的任意一点,a>b>0.
(I)若P(
5
2
3
),Q(
5
2
,1),求椭圆Cl的方程;
(Ⅱ)记直线AP,BP,AQ,BQ的斜率分别是k1,k2,k3,k4,求证:k1•k2+k3•k4为定值;
(Ⅲ)过Q作垂直于x轴的直线l,直线AP,BP分别交 l于M,N,判断△PMN是否可能为正三角形,并说明理由.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省广州东莞五校高三第二次联考文科数学卷 题型:解答题

(本题14分)已知AB分别是椭圆的左右两个焦点,O为坐标原点,点P )在椭圆上,线段PBy轴的交点M为线段PB的中点。

(1)求椭圆的标准方程;

(2)点是椭圆上异于长轴端点的任一点,对于△ABC,求的值。

 

查看答案和解析>>

同步练习册答案