精英家教网 > 高中数学 > 题目详情

如图所示,将一矩形花坛扩建成一个更大的矩形花坛,要求的延长线上,的延长线上,且对角线点.已知米,米。

(1)设(单位:米),要使花坛的面积大于32平方米,求的取值范围;
(2)若(单位:米),则当的长度分别是多少时,花坛的面积最大?并求出最大面积.

(Ⅰ);(Ⅱ)花坛的面积最大27平方米,此时米,米   .

解析试题分析:(Ⅰ)把表示后,再把矩形面积表示出来,解不等式可得;(Ⅱ)对(Ⅰ)中的函数解析式,以导数为工具,求出最大值.
试题解析:由于,则        
     4分
(1)由 得   ,
因为,所以,即
从而   
长的取值范围是    8分
(2)令,则    11分
因为当时,,所以函数上为单调递减函数,
从而当取得最大值,即花坛的面积最大27平方米,
此时米,米      16分
考点:函数的应用、导数的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求函数的单调区间;
(2)若函数满足:
①对任意的,当时,有成立;
②对恒成立.求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,函数 
(1)当时,求曲线处的切线方程;
(2)当时,求函数的单调区间;
(3)当时,求函数的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


(Ⅰ)讨论函数的单调性;
(Ⅱ)若,证明:时,成立

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题14分) 已知函数,若
(1)求曲线在点处的切线方程;
(2)若函数在区间上有两个零点,求实数b的取值范围;
(3)当

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,其中为常数。
(Ⅰ)当时,判断函数在定义域上的单调性;
(Ⅱ)若函数有极值点,求的取值范围及的极值点。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义在上的函数同时满足以下条件:①函数上是减函数,在上是增函数;②是偶函数;③函数处的切线与直线垂直.
(Ⅰ)求函数的解析式;
(Ⅱ)设,若存在使得,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知其中是自然对数的底 .
(1)若处取得极值,求的值;
(2)求的单调区间;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,处的切线方程为
(Ⅰ)求的单调区间与极值;
(Ⅱ)求的解析式;
(III)当时,恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案