精英家教网 > 高中数学 > 题目详情

是两个数列,点为直角坐标平面上的点,若对三点共线。

⑴求数列的通项公式;

⑵若数列满足:,其中是第三项为,公比为的等比数列,求数列的通项公式。

解:⑴ ----------------------------------------------2分

三点共线,

------------------------------------------------------------------------------1分

⑵由题意

由题意得

---------------------------------2分

时,

-----------------1分

-------------------------------------------------------1分

时,也适合上式,------------------------1分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设{an}{bn}是两个数列,点M(1,2),An(2,an)Bn(
n-1
n
2
n
)
为直角坐标平面上的点.
(Ⅰ)对n∈N*,若三点M,An,Bn共线,求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足:log2cn=
a1b1+a2b2+…+anbn
a1+a2+…+an
,其中{cn}是第三项为8,公比为4的等比数列.求证:点列P1(1,b1),P2(2,b2),…Pn(n,bn)在同一条直线上,并求出此直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设{an}{bn}是两个数列,点数学公式为直角坐标平面上的点.
(Ⅰ)对n∈N*,若三点M,An,Bn共线,求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足:数学公式,其中{cn}是第三项为8,公比为4的等比数列.求证:点列P1(1,b1),P2(2,b2),…Pn(n,bn)在同一条直线上,并求出此直线的方程.

查看答案和解析>>

科目:高中数学 来源:2012年广东省新课程高考冲刺全真模拟数学试卷6(文科)(解析版) 题型:解答题

设{an}{bn}是两个数列,点为直角坐标平面上的点.
(Ⅰ)对n∈N*,若三点M,An,Bn共线,求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足:,其中{cn}是第三项为8,公比为4的等比数列.求证:点列P1(1,b1),P2(2,b2),…Pn(n,bn)在同一条直线上,并求出此直线的方程.

查看答案和解析>>

科目:高中数学 来源:2010年上海市松江区高考模拟考试(理) 题型:解答题

 (本题满分16分,其中第(1)小题4分,第(2)小题8分,第(3)小题4分)

是两个数列,为直角坐标平面上的点.对若三点共线,

(1)求数列的通项公式;

(2)若数列{}满足:,其中是第三项为8,公比为4的等比数列.求证:点列(1,在同一条直线上;

(3)记数列、{}的前项和分别为,对任意自然数,是否总存在与相关的自然数,使得?若存在,求出的关系,若不存在,请说明理由.

 

 

 

 

 

 

 

查看答案和解析>>

同步练习册答案