精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱锥中,底面是边长为4的正三角形,底面,点分别为的中点,且异面直线所成的角的大小为.

(1)求证:平面平面

(2)求三棱锥的体积.

【答案】(1)证明过程详见解析(2)

【解析】

(1)由的中点,证得,再由线面垂直的性质,得到,利用线面垂直的判定定理,得到平面,进而证得平面平面

(2)取的中点,连结,得到底面,且异面直线所成的角的大小为,即,进而利用棱锥的体积公式,即可求解。

(1)证明:∵的中点,

平面平面

平面

平面

∴平面平面

(2)解:的中点,连结

∵三角形为正三角形,底面

,又分别为的中点

又∵异面直线所成的角的大小为

∴三角形为正三角形,

又∵,∴

又∵

∴三棱锥的体积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了坚决打赢新冠状病毒的攻坚战,阻击战,某小区对小区内的名居民进行模排,各年龄段男、女生人数如下表.已知在小区的居民中随机抽取名,抽到~岁女居民的概率是.现用分层抽样的方法在全小区抽取名居民,则应在岁以上抽取的女居民人数为(

岁—

岁—

岁以上

女生

男生

<>

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆心在直线上的圆经过点,但不经过坐标原点,并且直线与圆相交所得的弦长为4.

(1)求圆的一般方程;

(2)若从点发出的光线经过轴反射,反射光线刚好通过圆的圆心,求反射光线所在的直线方程(用一般式表达).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,三国时代数学家赵爽在《周髀算经》中利用弦图,给出了勾股定理的绝妙证明.图中包含四个全等的直角三角形及一个小正方形(阴影),设直角三角形有一内角为,若向弦图内随机抛掷500颗米粒(大小忽略不计,取),则落在小正方形(阴影)内的米粒数大约为( )

A. 134 B. 67 C. 200 D. 250

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】郴州市某中学从甲乙两个教师所教班级的学生中随机抽取100人,每人分别对两个教师进行评分,满分均为100分,整理评分数据,将分数以10为组距分成6组:.得到甲教师的频率分布直方图,和乙教师的频数分布表:

(1)在抽样的100人中,求对甲教师的评分低于70分的人数

(2)从对乙教师的评分在范围内的人中随机选出2人,求2人评分均在范围内的概率

(3)如果该校以学生对老师评分的中位数是否大于80分作为衡量一个教师是否可评为该年度该校优秀教师的标准,则甲、乙两个教师中哪一个可评为年度该校优秀教师?(精确到0.1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了对某课题进行研究,分别从ABC三所高校中用分层随机抽样法抽取若干名教授组成研究小组,其中高校Am名教授,高校B72名教授,高校Cn名教授(其中

1)若AB两所高校中共抽取3名教授,BC两所高校中共抽取5名教授,求mn

2)若高校B中抽取的教授数是高校AC中抽取的教授总数的,求三所高校的教授的总人数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正三角形的边长为,将它沿高翻折,使点与点间的距离为,此时四面体外接球表面积为

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年8月教育部、国家卫生健康委员会等八个部门联合印发《综合防控儿童青少年近视实话方案》中明确要求,为切实加强新时代儿童青少年近视防控工作,学校应严格组织全体学生每天上、下午各大做1次眼保健操.为了了解学校推广眼保健操是否能有效预防近视,随机从甲学校抽取了50名学生,再从乙学校选出与甲学校被抽取的50名学生视力情况一样的50学生(期中甲学校每天安排学生做眼保健操,乙学校不安排做跟保健操),一段时间后检测他们的视力情况并统计,若视力情况为1.0及以上,则认为该学生视力良好,否则认为该学生的视力一般,表1为甲学校视力情况的频率分布表,表2为乙学校学生视力情况的频率分布表,根据表格回答下列问题:

表1 甲学校学生视力情况的频率分布表

视力情况

0.6

0.8

1.0

1.2

1.5

频 数

1

1

15

15

18

表2 乙学校学生视力情况的频率分布表

视力情况

0.5

0.6

0.8

1.0

1.2

1.5

频 数

2

2

4

19

13

10

(1)求在甲学校的50名学生中随机选择1名同学,求其视力情况为良好的概率;

(2)根据表1,表2,对在学校推广眼保健操的必要性进行分析;

(3)在乙学校视力情况一般的学生中选择2人,了解其具体用眼习惯,求这两人视力情况都为0.8的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的展开式中各项系数的和为2,则下列结论正确的有(

A.

B.展开式中常数项为160

C.展开式系数的绝对值的和1458

D.为偶数,则展开式中的系数相等

查看答案和解析>>

同步练习册答案