精英家教网 > 高中数学 > 题目详情
写出求过点M(-2,-1)、N(2,3)的直线与坐标轴围成三角形面积的一个算法.

解:算法步骤如下:

第一步  取x1=-2,y1=-1,x2=2,y2=3.

第二步  得直线方程.

第三步  令x=0,得y的值m,从而得直线与y轴交点的坐标(0,m).

第四步  令y=0,得x的值n,从而得直线与x轴交点的坐标(n,0).

第五步  根据三角形面积公式求S=·|m|·|n|.

第六步  输出运算结果.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•太原一模)在直角坐标系中,以原点为极点,x轴的正半轴为极轴建坐标系,已知曲线C:ρsin2θ=2acosθ(a>0),已知过点P(-2,-4)的直线L的参数方程为:
x=-2+
2
2
t
y=-4+
2
2
t
,直线L与曲线C分别交于M,N.
(Ⅰ)写出曲线C和直线L的普通方程;    
(Ⅱ)若|PM|,|MN|,|PN|成等比数列,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x22
-y2=1
的两焦点为F1,F2,P为动点,若PF1+PF2=4.
(Ⅰ)求动点P的轨迹E方程;
(Ⅱ)若A1(-2,0),A2(2,0),M(1,0),设直线l过点M,且与轨迹E交于R、Q两点,直线A1R与A2Q交于点S.试问:当直线l在变化时,点S是否恒在一条定直线上?若是,请写出这条定直线方程,并证明你的结论;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
2
2
,且过点M(2,
2
),O为坐标原点.
(Ⅰ)求椭圆E的方程;
(Ⅱ)是否存在以圆心为原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A、B,且
OA
OB
?若存在,写出该圆的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年四川省绵阳市高三12月月考理科数学试卷(解析版) 题型:解答题

设椭圆E:=1()过点M(2,), N(,1),为坐标原点

(I)求椭圆E的方程;

(II)是否存在以原点为圆心的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程;若不存在,说明理由。

 

查看答案和解析>>

同步练习册答案