精英家教网 > 高中数学 > 题目详情

【题目】是定义在上的奇函数,对,均有,已知当时, ,则下列结论正确的是( )

A. 的图象关于对称 B. 有最大值1

C. 上有5个零点 D. 时,

【答案】C

【解析】∵f(x)是定义在R上的奇函数,对x∈R,均有f(x+2)=f(x),故函数的周期为2,则f(x)的图象关于(1,0)点对称,故A错误;f(x)∈(-1,1),无最大值,故B错误;整数均为函数的零点,故f(x)在[-1,3]上有5个零点,故C正确;当x∈[2,3)时,x-2∈[0,1),则f(x)=f(x-2)=2x-2-1,当x=3时,f(x)=0,故D错误;

故选C.

点睛:本题是函数性质的综合应用,已知对称中心,周期能推出另一个对称中心,根据某区间上的解析式,结合周期性,对称性可以得到一个周期中的函数图象,从而关于最值,零点等问题都可以解决.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格.某校有800 名学生参加了初赛,所有学生的成绩均在区间内,其频率分布直方图如图所示

(Ⅰ)求初赛分数在区间内的频率;

(Ⅱ)求获得复赛资格的人数;

(Ⅲ)据此直方图估算学生初赛成绩的平均数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中:

①“若,则”的否命题是“若,则”;

②“”是“”的必要非充分条件;

③“”是“”的充分非必要条件;

④“”是“”的充要条件.

其中正确的序号为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

1)若曲线处的切线方程为求实数的值;

2)设若对任意两个不等的正数都有恒成立,求实数的取值范围;

3)若在上存在一点使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.

(1)求顾客抽奖1次能获奖的概率;

(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱 平面 .

1)证明:平面平面

2)若四棱柱的体积为求该三棱柱的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对某校高三年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表如下,频率分布直方图如图:

分组

频数

频率

[10,15)

10

0.25

[15,20)

24

n

[20,25)

m

p

[25,30)

2

0.05

合计

M

1

(1)求出表中M,p及图中a的值;

(2)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间[10,15)内的人数;

(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间[25,30)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下三个关于圆锥曲线的命题中:

①设为两个定点,为非零常数,若,则动点的轨迹是双曲线;

②方程的两根可分别作为椭圆和双曲线的离心率;

③双曲线与椭圆有相同的焦点;

④已知抛物线,以过焦点的一条弦为直径作圆,则此圆与准线相切,其中真命题为__________.(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线的参数方程为为参数),以原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为(限定).

(1)写出曲线的极坐标方程,并求交点的极坐标;

(2)射线与曲线分别交于点异于原点),求的取值范围.

查看答案和解析>>

同步练习册答案