精英家教网 > 高中数学 > 题目详情
如图,在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=AA1=2,D是AB的中点.
(Ⅰ)求AC1与平面B1BCC1所成角的正切值;
(Ⅱ)求证:AC1∥平面B1DC.
考点:直线与平面平行的判定,直线与平面所成的角
专题:空间位置关系与距离
分析:(Ⅰ)连接BC1.判断AB⊥面BB1C1C,到底线面角;
(Ⅱ)连接BC1,交B1C于F,则F为BC1的中点,得到DF∥AC1,利用线面平行的判定定理可证.
解答: 解:(Ⅰ)连接BC1
因为直棱柱,所以BB1⊥AB,
而由于AB⊥BC,
所以AB⊥面BB1C1C,
所以∠AC1B即为AC1与平面BB1C1C所成角.
因为AB=BC=AA1=2,所以tan∠AC1B=
AB
BC1
=
2
2
2
=
2
2

(Ⅱ)证明:连接BC1,交B1C于F,则F为BC1的中点,
因为D是AB的中点.
所以在△ABC1中,DF∥AC1
又DF?平面B1DC,AC1?平面B1DC,
所以AC1∥平面B1DC.
点评:本题考查了空间角的线面角以及线面平行的判定定理的运用;关键是将空间问题转化为平面其他解决.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sin(x+
π
3
)sin(x+
π
2
).
(1)求f(x)的最小正周期;
(2)若g(x)=f(x)-
3
4
,求g(x)在区间[0,
π
2
]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知长方体ABCD-A1B1C1D1的对角线A1C与侧棱BB1所成的角为45°,且AB=BC=1,求A1C与侧面BB1C1C所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,设角A,B,C所对的边分别为a,b,c,G为△ABC的重心,且a
GA
+b
GB
+c
GC
=
0
,则△ABC为
(  )
A、等腰直角三角形
B、直角三角形
C、等腰三角形
D、等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

已知D为△ABC的边BC的中点,△ABC所在平面内有一个点P,满足
PA
=
PB
+
PC
,则
|
PD
|
|
AD
|
的值为(  )
A、
1
3
B、
1
2
C、1
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

当a1,a2,…,a25是0或2时,形如x=
a1
3
+
a2
32
+…+
a25
325
的一切数x,可满足(  )
A、0≤x<
1
3
B、
1
3
≤x<
2
3
C、
2
3
≤x<1
D、0≤x<
1
3
2
3
≤x<1

查看答案和解析>>

科目:高中数学 来源: 题型:

长方体ABCD-A1B1C1D1中,AA1=c,AB=a,AD=b,a>b,设异面直线AC1与BD所成角为θ.求证:cosθ=
a2-b2
(a2+b2)(a2+b2+c2)

查看答案和解析>>

科目:高中数学 来源: 题型:

牛顿冷却模型是指:在常温环境下,如果最初的温度时θ1,环境温度是θ0,则经过时间t(单位:min)后物体的温度θ(单位:℃)将满足;θ=f(t)=θ0+(θ10)e-kt,其中k为正常数,假设在室内温度为20℃的情况下,一桶咖啡由100℃降低到60℃需要20min.
(1)求f(t)
(2)f′(0)=-2.768的实际意义是什么?
(3)画出函数θ=f(t)在t=20附近的大致图.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四面体ABCD中,若M、N分别是棱AD、BC的中点,AC=BD=6,MN=3
2
,求MN与AC所成的角.

查看答案和解析>>

同步练习册答案