精英家教网 > 高中数学 > 题目详情
1.若a,b∈R,命题p:直线y=ax+b与圆x2+y2=1相交;命题$q:a>\sqrt{{b^2}-1}$,则p是q的 (  )
A.必要不充分条件B.充分不必要条件
C.充分必要条件D.既不充分也不必要条件

分析 分别求出命题p和q的等价条件,利用充分必要的定义进行判断;

解答 解:若直线y=ax+b与圆x2+y2=1相交,
则圆心到直线的距离d=$\frac{|b|}{\sqrt{{a}^{2}+1}}$<1,即|b|<$\sqrt{{a}^{2}+1}$,此时a>$\sqrt{{b}^{2}-1}$不一定成立,
若a>$\sqrt{{b}^{2}-1}$,
则等价于$\left\{\begin{array}{l}{a>0}\\{|b|≥1}\\{{a}^{2}>{b}^{2}-1}\end{array}\right.$,即b2<a2+1,即|b|<$\sqrt{{a}^{2}+1}$,成立,
∴p是q必要不充分条件,
故选A;

点评 本题主要考查充分条件和必要条件的判断,根据直线和圆的位置关系求出命题的等价条件是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=x+x3,x1,x2,x3∈R,x1+x2>0,x2+x3>0,x3+x1>0,那么f(x1)+f(x2)+f(x3)的值(  )
A.一定大于0B.等于0C.一定小于0D.正负都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知向量$\overrightarrow{a}$=(cosx,sinx),$\overrightarrow{b}$=($\sqrt{2}$,$\sqrt{2}$),若$\overrightarrow{a}$•$\overrightarrow{b}$=$\frac{8}{5}$且$\frac{π}{4}$<x<$\frac{π}{2}$,求$\frac{sin2x(1+tanx)}{1-tanx}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆E的方程:$\frac{x^2}{100}+\frac{y^2}{25}=1$,P为椭圆上的一点(点P在第三象限上),圆P 以点P为圆心,且过椭圆的左顶点M与点C(-2,0),直线MP交圆P与另一点N.
(Ⅰ)求圆P的标准方程;
(Ⅱ)若点A在椭圆E上,求使得$\overrightarrow{AM}•\overrightarrow{AN}$取得最小值的点A的坐标;
(Ⅲ)若过椭圆的右顶点的直线l上存在点Q,使∠MQN为钝角,求直线l斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1、F2.点P(a,b)满足|PF2|=|F1F2|.
(1)求椭圆的离心率e;
(2)设直线PF2与椭圆相交于A,B两点,若|AB|=$\frac{32}{5}$,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1满足彖件:(1)焦点为F1(-5,0),F2(5,0);(2)离心率为$\frac{5}{3}$,求得双曲线C的方程为f(x,y)=0.若去掉条件(2),另加一个条件求得双曲线C的方程仍为f(x,y)=0,则下列四个条件中,符合添加的条件共有   (  )
①双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1上的任意点P都满足||PF1|-|PF2||=6
②双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的虚轴长为4
③双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的一个顶点与抛物线y2=6x的焦点重合
④双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的渐近线方程为4x±3y=0.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.体积为$\frac{4}{3}π$的球O放置在棱长为4的正方体ABCD-A1B1C1D1上,且与上表面A1B1C1D1相切,切点为该表面的中心,则四棱锥O-ABCD的外接球的半径为(  )
A.$\frac{10}{3}$B.$\frac{33}{10}$C.$\frac{23}{6}$D.$\frac{41}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知公比不为1的等比数列{an}的前n项和为Sn,S6=$\frac{63}{32}$,且-a2,a4,3a3成等差数列.
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=nan,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC中,∠A,∠B,∠C所对边的长分别为a,b,c.已知a+$\sqrt{2}$c=2b,sinB=$\sqrt{2}$sinC,则$sin\frac{C}{2}$=$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

同步练习册答案