精英家教网 > 高中数学 > 题目详情
设抛物线C:y2=4x的焦点为F,过点F的直线与抛物线C交于A,B两点,过AB的中点M作准线的垂线与抛物线交于点P,若|PF|=
3
2
,则弦长|AB|等于
 
考点:抛物线的简单性质
专题:综合题,圆锥曲线的定义、性质与方程
分析:求出抛物线焦点为F(1,0),准线为l:x=-1.设A(x1,y1)、B(x2,y2),直线AB的方程为y=k(x-1),由AB方程与抛物线方程消去y得关于x的一元二次方程,利用根与系数的关系算出算出P的坐标,根据|PF|=
3
2
,利用点到两点间的距离公式解出k2=2,从而算出x1+x2=4,最后根据抛物线的定义可得弦长|AB|的值.
解答: 解:∵抛物线方程为y2=4x,
∴2p=4,p=2,可得抛物线的焦点为F(1,0),准线为l:x=-1,
设A(x1,y1),B(x2,y2),直线AB的方程为y=k(x-1),
代入抛物线方程消去y,得k2x2-(2k2+4)x+k2=0,
∴x1+x2=
2k2+4
k2
,x1x2=1,
∵过AB的中点M作准线的垂线与抛物线交于点P,
∴设P的坐标为(x0,y0),可得y0=
1
2
(y1+y2),
∵y1=k(x1-1),y2=k(x2-1),
∴y1+y2=k(x1+x2)-2k=k•
2k2+4
k2
-2k=
4
k

得到y0=
2
k
,所以x0=
1
k2
,可得M(
1
k2
2
k
).
|PF|=
3
2
,∴
(1-
1
k2
)2+
4
k2
=
3
2
,解之得k2=2,
因此x1+x2=
2k2+4
k2
=4,根据抛物线的定义可得|AB|=x1+x2+p=4+2=6.
故答案为:6
点评:本题给出抛物线满足的条件,求抛物线经过焦点的弦AB的长.着重考查了抛物线的定义、标准方程与简单几何性质的知识,考查了直线与圆锥曲线的位置关系,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知Sn是等比数列{an}的前n项和,S4,S2,S3成等差数列,且a2+a3+a4=-18.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)是否存在正整数n,使得Sn≥2014?若存在,求出符合条件的所有n的集合;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)满足f(x+1)-f(x)=2x-1,且f(0)=3.
(1)求f(x)的解析式;
(2)若x∈[-1,1]时,f(x)≥2mx恒成立,求实数m的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且有a1=2,3Sn=5an-an-1(n≥2)
(Ⅰ)求数列an的通项公式;
(Ⅱ)若bn=(2n-1)an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的偶函数f(x),满足f(x+2)=f(x),且在区间[-1,0]上为递增,则(  )
A、f(
2
)<f(2)<f(3)
B、f(2)<f(3)<f(
2
C、f(3)<f(2)<f(
2
D、f(3)<f(
2
)<f(2)

查看答案和解析>>

科目:高中数学 来源: 题型:

平面内有一个长度为4的线段AB,动点P满足|PA|+|PB|=6,则|PA|长的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC,边a、b所对的角分别为A、B,若cosA=-
3
5
,B=
π
6
,b=1,则a=(  )
A、
8
5
B、
4
5
C、
16
5
D、
5
8

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示的程序框图,如果输入的x,y,N的值分别为1,2,3,则输出的S=(  )
A、27B、81C、99D、577

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中,既是奇函数又在区间(0,+∞)上单调递增的函数为(  )
A、y=x2
B、y=
1
x
C、y=x3
D、y=
x

查看答案和解析>>

同步练习册答案