精英家教网 > 高中数学 > 题目详情

【题目】比较下列各组中两个值的大小 :

(1)ln0.3ln2(2)loga3.1loga5.2(a>0,且a1)

(3)log30.2log40.2(4)log3πlogπ3.

【答案】(1)ln0.3<ln2;(2)见解析;(3)log30.2<log40.2;(4)log3π>logπ3.

【解析】试题分析:(1)构造对数函数y=lnx,利用函数的单调性判断;(2)需对底数a分类讨化;(3)由于两个对数的底数不同,故不能直接比较大小,可对这两个对数分别取倒数,再根据同底对数函数的单调性比较大小;(4)构造对数函数,并借助中间量判断.

试题解析

(1)因为函数y=lnx是增函数,且0.3<2,

所以ln0.3<ln2.

(2)当a>1时,函数y=logax在(0,+∞)上是增函数,

又3.1<5.2,所以loga3.1<loga5.2;

当0<a<1时,函数y=logax在(0,+∞)上是减函数,

又3.1<5.2,所以loga3.1>loga5.2.

(3)因为0>log0.23>log0.24,所以<,即log30.2<log40.2.

(4)因为函数y=log3x是增函数,且π>3,所以log3π>log33=1,

同理,1=logππ>logπ3,即log3π>logπ3.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数(为自然对数的底数,,(,),

.求上的最大值的表达式;

时,方程上恰有两个相异实根,求实根的取值范围;

,求使得图像恒在图像上方的最大正整数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题:①集合的子集个数有16个;②定义在上的奇函数必满足;③既不是奇函数又不是偶函数;④偶函数的图像一定与轴相交;⑤上是减函数。

其中真命题的序号是 ______________(把你认为正确的命题的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前3项和为6,前8项和为-4.

(1)求数列{an}的通项公式;

(2)设bn=(4-an)qn-1 (q≠0,n∈N*),求数列{bn}的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线y2=2px(p>0)的焦点为F,A是抛物线上横坐标为4,且位于x轴上方的点,A到抛物线准线的距离等于5,过A作AB垂直于y轴,垂足为B,OB的中点为M.

(1)求抛物线的方程;

(2)以M为圆心,MB为半径作圆M,当K(m,0)是x轴上一动点时,讨论直线AK与圆M的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=,其中a∈R.

(I)当a=1时,求曲线y=f(x)在原点处的切线方程;

(II)求f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:

若(1-x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则|a1|+|a2|+|a3|+|a4|+|a5|=32

α,β,γ是三个不同的平面,则“γα,γβ”是“αβ”的充分条件

已知sin,则cos.其中正确命题的个数为( )

A.0 B.1

C.2 D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】东莞市某高级中学在今年4月份安装了一批空调,关于这批空调的使用年限(单位:年, )和所支出的维护费用(单位:万元)厂家提供的统计资料如下:

(1)请根据以上数据,用最小二乘法原理求出维护费用关于的线性回归方程

(2)若规定当维护费用超过13.1万元时,该批空调必须报废,试根据(1)的结论求该批空调使用年限的最大值.

参考公式:最小二乘估计线性回归方程中系数计算公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的定义域为(2,2)函数g(x)f(x1)f(32x)

(1)求函数g(x)的定义域

(2)f(x)是奇函数且在定义域上单调递减求不等式g(x)0的解集

查看答案和解析>>

同步练习册答案