精英家教网 > 高中数学 > 题目详情

【题目】3个红球与3个黑球随机排成一行,从左到右依次在球上标记123456,则红球上的数字之和小于黑球上的数字之和的概率为(

A.B.

C.D.

【答案】D

【解析】

将红球与黑球上标记数字情况用表格列举,

根据表格可知“红球上数字之和小于黑球上数字之和”与“红球上数字之和大于黑球上数字之和”是“对等”的,即可得出概率为.

解:红球与黑球上标记数字情况用表格列举如下:

红球

123

124

125

126

134

135

136

145

146

156

黑球

黑球

456

356

346

345

256

246

245

236

235

234

红球

种情况,红球与黑球上数字之和均不相等,红球上数字之和小于黑球上数字之和与红球上数字之和大于黑球上数字之和是“对等”的,各占一半,故所求概率为,故选D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,底面是直角梯形,其中为棱上的点,且

1)求证:平面

2)求二面角的余弦值;

3)设为棱上的点(不与重合),且直线与平面所成角的正弦值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆长轴长为短轴长的两倍,连结椭圆的四个顶点得到的菱形的面积为4,直线过点,且与椭圆相交于另一点.

1)求椭圆的方程;

2)若线段长为,求直线的倾斜角;

3)点在线段的垂直平分线上,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若,曲线在点处的切线与直线平行,求的值;

2)若,且函数的值域为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左顶点为,右焦点为,斜率为1的直线与椭圆交于两点,且,其中为坐标原点.

1)求椭圆的标准方程;

2)设过点且与直线平行的直线与椭圆交于两点,若点满足,且与椭圆的另一个交点为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个焦点为,离心率为.

1)求的标准方程;

2)若动点外一点,且的两条切线相互垂直,求的轨迹的方程;

3)设的另一个焦点为,过上一点的切线与(2)所求轨迹交于点,,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】实数ab满足ab>0ab,由ab按一定顺序构成的数列(  )

A. 可能是等差数列,也可能是等比数列

B. 可能是等差数列,但不可能是等比数列

C. 不可能是等差数列,但可能是等比数列

D. 不可能是等差数列,也不可能是等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在圆台中,平面过上下底面的圆心,点M上,N的中点,.

1)求证:平面平面

2)当时,与底面所成角的正弦值为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义域为R的函数,若函数是奇函数,则称为正弦奇函数.已知 是单调递增的正弦奇函数,其值域为R.

1)已知是正弦奇函数,证明:为方程的解的充要条件是为方程的解

2)若,求的值;

3)证明:是奇函数.

查看答案和解析>>

同步练习册答案