精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,三内角A、B、C对应的边分别为a、b、c,且c=1,acosB+bcosA=2cosC,设h是边AB上的高,则h的最大值为

【答案】
【解析】解:∵acosB+bcosA=2cosC,且c=1, ∴由题意及正弦定理可得:sinAcosB+sinBcosA=2sinCcosC,即sinC=2sinCcosC,
∵sinC≠0,
∴cosC=
可解得:sinC=
可得:cosC= =
∴ab=a2+b2﹣1≥2ab﹣1,即ab≤1,等号当a=b时成立,
∴可得:SABC= absinC≤
又∵h是边AB上的高,SABC= ch= h≤
∴解得:h≤ ,则h的最大值为
所以答案是:
【考点精析】掌握正弦定理的定义是解答本题的根本,需要知道正弦定理:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图
(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;
(Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2017年我国生活垃圾无害化处理量.
参考数据: =9.32, =40.17, =0.55, ≈2.646.
参考公式:相关系数r= 回归方程 = + t 中斜率和截距的最小二乘估计公式分别为: = =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(Ⅰ)若曲线y=f(x)与直线y=kx相切于点P,求点P的坐标;
(Ⅱ)当a≤e时,证明:当x∈(0,+∞),f(x)≥a(x﹣lnx).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的奇函数f(x)满足:f(x+1)=f(x﹣1),且当﹣1<x<0时,f(x)=2x﹣1,则f(log220)等于(
A.
B.﹣
C.﹣
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以原点为极点,x轴的非负半轴为极轴,并在两坐标系中取相同的长度单位,若直线l的极坐标方程是ρsin(θ+ )=2 ,且点P是曲线C: (θ为参数)上的一个动点.
(Ⅰ)将直线l的方程化为直角坐标方程;
(Ⅱ)求点P到直线l的距离的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)= ,证明:
(I)当x<0时,f(x)<1;
(II)对任意a>0,当0<|x|<ln(1+a)时,|f(x)﹣1|<a.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,4sinA+3cosB=5,4cosA+3sinB=2 ,则角C等于(
A.150°或30°
B.120°或60°
C.30°
D.60°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图<1>:在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC=2,AD=6,CE⊥AD于E点,把△DEC沿CE折到D′EC的位置,使D′A=2 ,如图<2>:若G,H分别为D′B,D′E的中点.
(1)求证:GH⊥平面AD′C;
(2)求平面D′AB与平面D′CE的夹角.

查看答案和解析>>

同步练习册答案