精英家教网 > 高中数学 > 题目详情
已知数列{an}(n∈N*)满足an+1=
an-t,an≥t
t+2-anan<t
,且t<a1<t+1,其中t>2,若an+k=an(k∈N*),则实数k的最小值为
 
分析:由题意可知,a2=a1-t,a5=a1.由此可知当an+k=an(k∈N*)时,实数k的最小值是4.
解答:解:由题意可知,a2=a1-t,
a3=t+2-(a1-t)=2t+2-a1
a4=(2t+2-a1)-t=t+2-a1,a5=t+2-(t+2-a1).
由此可知当an+k=an(k∈N*)时,实数k的最小值是4.
答案:4.
点评:本题考查数列的性质及其应用,解题时要注意公式的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

11、已知数列{an}(n≥1)满足an+2=an+1-an,且a2=1.若数列的前2011项之和为2012,则前2012项的和等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

17、已知数列{an}前n项和为Sn且2an-Sn=2(n∈N*).
(Ⅰ)求{an}的通项公式;
(Ⅱ)若数列{bn}满足b1=1,且bn+1=bn+an(n≥1),求{bn}通项公式及前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}(n∈N+)中,a1=1,an+1=
an
2an+1
,则an=
1
2n-1
1
2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}前n项和Sn=n2+2n,设bn=
1anan+1

(1)试求an
(2)求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•嘉定区一模)定义x1,x2,…,xn的“倒平均数”为
n
x1+x2+…+xn
(n∈N*).已知数列{an}前n项的“倒平均数”为
1
2n+ 4
,记cn=
an
n+1
(n∈N*).
(1)比较cn与cn+1的大小;
(2)设函数f(x)=-x2+4x,对(1)中的数列{cn},是否存在实数λ,使得当x≤λ时,f(x)≤cn对任意n∈N*恒成立?若存在,求出最大的实数λ;若不存在,说明理由.
(3)设数列{bn}满足b1=1,b2=b(b∈R且b≠0),bn=|bn-1-bn-2|(n∈N*且n≥3),且{bn}是周期为3的周期数列,设Tn为{bn}前n项的“倒平均数”,求
lim
n→∞
Tn

查看答案和解析>>

同步练习册答案