精英家教网 > 高中数学 > 题目详情
4.若复数z满足(3+2i)•z=5-i,则|z|=(  )
A.1B.$\sqrt{2}$C.2D.$2\sqrt{2}$

分析 把已知等式变形,然后利用复数代数形式的乘除运算化简复数z,再由复数求模公式计算得答案.

解答 解:由(3+2i)•z=5-i,
得$z=\frac{5-i}{3+2i}=\frac{(5-i)(3-2i)}{(3+2i)(3-2i)}=\frac{13-13i}{13}=1-i$,
则$|z|=\sqrt{2}$.
故选:B.

点评 本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=lnx,g(x)=$\frac{a}{x}$(a>0),设h(x)=f(x)+g(x).
(1)求h(x)的单调区间;
(2)若在y=h(x)在x∈(0,3]的图象上存在一点P(x0,y0),使得以P(x0,y0)为切点的切线的斜率k≥$\frac{1}{2}$成立,求实数a的最大值;
(3)是否存在实数m,使得函数y=g($\frac{2a}{{x}^{2}+1}$)+m-1的图象于y=f(x2+1)的图象恰好有四个不同的交点?若存在,求出m的取值范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.某公司决定采用增加广告投入和技术改造投入两项措施来获得更大的收益.通过市场的预测发现,当对两项投入都不大于3百万元时,每投入x百万元广告费,增加的销售额可近似的用函数${y_1}=-2{x^2}+14x$(百万元)来计算;每投入x百万元技术改造费用,增加的销售额可近似的用函数${y_2}=-\frac{1}{3}{x^3}+2{x^2}+5x$(百万元)来计算.如果现在该公司共投入3百万元,分别用于广告投入和技术改造投入,那么预测该公司可增加的最大收益为$21+2\sqrt{3}$百万元.(注:收益=销售额-投入)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知y=x2+2(a-1)x+2在(-∞,4]上单调递减,在[5,+∞)上单调递增,则a的范围-4≤a≤-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合A={x|x=3n+1,n∈N},B={6,7,8,9,10,11},C=A∩B,则集合C的子集个数为(  )
A.2B.4C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ex-mx2-2x
(1)若m=0,讨论f(x)的单调性;
(2)若m<$\frac{e}{2}$-1时,证明:当x∈[0,+∞)时,f(x)>$\frac{e}{2}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知0<β<$\frac{π}{2}$<α<π,且cos(α-$\frac{β}{2}$)=-$\frac{{\sqrt{2}}}{2}$,sin($\frac{α}{2}$-β)=$\frac{{\sqrt{2}}}{2}$,则cos(α+β)的值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=x-(e-1)lnx,则不等式f(ex)<1的解集为(  )
A.(0,1)B.(1,+∞)C.(0,e)D.(e,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知m∈R,命题p:对任意x∈[0,1],不等式2x-2≥m2-3m 恒成立;命题q:存在x∈[-1,1],使得m≤ax 成立.
(1)若p为真命题,求m 的取值范围;
(2)当a=1 时,若p且q为假,p或q为真,求m的取值范围.

查看答案和解析>>

同步练习册答案