精英家教网 > 高中数学 > 题目详情
5.在(1+x)6(1+y)4的展开式中,记xmyn项的系数为f(m,n),则f(3,0)+f(2,1)+f(1,2)+f(0,3)=120.

分析 由题意依次求出x3y0,x2y1,x1y2,x0y3项的系数,求和即可.

解答 解:(1+x)6(1+y)4的展开式展开式中,含x3y0的系数是:${C}_{6}^{3}{•C}_{4}^{0}$=20,故f(3,0)=20;
含x2y1的系数是${C}_{6}^{2}{•C}_{4}^{1}$=60,故f(2,1)=60;
含x1y2的系数是${C}_{6}^{1}{•C}_{4}^{2}$=36,故f(1,2)=36;
含x0y3的系数是${C}_{6}^{0}{•C}_{4}^{3}$=4,故f(0,3)=4;
∴f(3,0)+f(2,1)+f(1,2)+f(0,3)=120.
故答案为:120.

点评 本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知x>0,y>0,且(x+1)(y+1)=9,则x+y的最小值是(  )
A.4B.5C.$\frac{9}{2}$D.$\frac{11}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.过椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左顶点A且斜率为k的直线交椭圆与另一个点B,且点B在x轴上的设影恰好为右焦点F,若0<k<$\frac{1}{3}$,则椭圆的离心率的取值范围是($\frac{2}{3}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=sinωx+$\sqrt{3}$cosωx(ω>0)的最小正周期为π,
(1)求ω的值与函数f(x)的图象的对称轴方程;
(2)若角A为△ABC的最小内角,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知实数a>0,定义域为(-1,1)的函数f(x)=$\sqrt{\frac{1-x}{1+x}}$+a$\sqrt{\frac{1+x}{1-x}}$;
(1)当a=1时,用定义判定f(x)的奇偶性并求(x)的最小值.
(2)用定义证明函数g(x)=x+$\frac{k}{x}$(k>0)在(0,$\sqrt{k}$)上单调递减,则($\sqrt{k}$,+∞)上单调递增;
(3)利用(2)的结论求实数a的取值范围,使得对于区间[0,$\frac{4}{5}$]上的任意三个实数r,s,t,都存在以f(r),f(s),f(t)为边长的三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知点A(2,0),B(-2,4),C(5,8),若线段AB和CD有相同的中垂线,则点D的坐标是(-6,7).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知a=2${\;}^{-\frac{1}{3}}$,b=log2$\frac{1}{3}$,c=3${\;}^{-\frac{1}{2}}$,则a,b,c的大小关系是(  )
A.c>a>bB.a>b>cC.a>c>bD.b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数$f(x)=2sin(x+\frac{π}{4})$
(1)用“五点法”作出函数$f(x)=2sin(x+\frac{π}{4})$的简图;
(2)求出函数的最大值及取得最大值时的x的值;
(3)求出函数在[0,2π]上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知$\frac{1-ai}{1+i}$的虚部为-1,则实数a为1.

查看答案和解析>>

同步练习册答案