精英家教网 > 高中数学 > 题目详情

【题目】已知函数

)若,求曲线在点处的切线方程.

)若,求函数的单调区间.

)若,且在区间上恒成立,求的取值范围.

【答案】(1) (2) 单调递增区间为,单调递减区间为 (3)

【解析】试题分析:

1求出导函数,切线方程为,化简即得;

2求出导函数由不等式得增区间,由不等式得减区间;

3)题意说明,因此求出导函数 的零点有1因此按的大小进行分类讨论,求得的最小值,然后由可得.

试题解析:

∴切线方程为

,则

单调递增区间为,单调递减区间为

3时, 在区间恒成立,即

时,

恒成立.

时,即

,即

时,即

,即

,即

不符合.

,即

,即不符合,

综上:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知 分别为椭圆的左、右焦点,椭圆离心率,直线通过点,且倾斜角是45°.

(1)求椭圆的标准方程;

(2)若直线与椭圆交于两点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a,b,c分别为A,B,C所对边,a+b=4,(2﹣cosA)tan =sinA.
(1)求边长c的值;
(2)若E为AB的中点,求线段EC的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为,上顶点为,若直线的斜率为1,且与椭圆的另一个交点为 的周长为.

(1)求椭圆的标准方程;

(2)过点的直线(直线的斜率不为1)与椭圆交于两点,点在点的上方,若,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角梯形ABCD中,AD∥BC,∠A=90°,AB=2AD,若将△ABD沿直线BD折成△A′BD,使得A′D⊥BC,则直线A′B与平面BCD所成角的正弦值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 向量 =(Sn , 1), =(2n﹣1, ),满足条件
(1)求数列{an}的通项公式,
(2)设函数f(x)=( x , 数列{bn}满足条件b1=1,f(bn+1)=
①求数列{bn}的通项公式,
②设cn= ,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的顶点是坐标原点焦点轴的正半轴上,过焦点且斜率为的直线与抛物线交于两点,且满足.

1)求抛物线的方程;

(2)已知为抛物线上一点,若点位于轴下方且的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来城市共享单车的投放在我国各地迅猛发展,共享单车为人们出行提供了很大的便利,但也给城市的管理带来了一些困难,现某城市为了解人们对共享单车投放的认可度,对年龄段的人群随机抽取人进行了一次你是否赞成投放共享单车的问卷调查,根据调查结果得到如下统计表和各年龄段人数频率分布直方图:

组号

分组

赞成投放的人数

赞成投放的人数占本组的频率

第一组

第二组

第三组

第四组

第五组

第六组

)求 的值.

)在第四、五、六组赞成投放共享单车的人中,用分层抽样的方法抽取人参加共享单车骑车体验活动,求第四、五、六组应分别抽取的人数.

)在()中抽取的人中随机选派人作为领队,求所选派的人中第五组至少有一人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲乙两人同时生产内径为的一种零件,为了对两人的生产质量进行评比,从他们生产的零件中各抽出 5 件(单位: ) ,

甲:25.44,25.43, 25.41,25.39,25.38

乙:25.41,25.42, 25.41,25.39,25.42.

从生产的零件内径的尺寸看、谁生产的零件质量较高.

查看答案和解析>>

同步练习册答案