精英家教网 > 高中数学 > 题目详情

【题目】现安排甲乙丙丁戊5名学生分别担任语文、数学、英语、物理、化学学科的科代表,要求甲不当语文科代表,乙不当数学科代表,若丙当物理科代表则丁必须当化学科代表,则不同的选法共有多少种( )

A. 53 B. 67 C. 85 D. 91

【答案】B

【解析】丙当物理课代表则丁必须当化学课代表,以丙进行分类 第一类,当丙当物理课代表时,丁必须当化学课代表,再根据甲当数学课代表,乙戊可以当英语和语文中的任一课,有种,当甲不当数学课代表,甲只能当英语课代表,乙只能当语文课代表,戊当数学课代表,有种,共计种, 第二类,当丙不当物理课代表时,分四类丙为语文课代表时,乙只能从英语、物理和U学中选择一课,剩下的甲丁戊任意排给剩下的三
课,有种,②丙为数学课代表时,甲只能从英语、物理和化学课,剩下的乙丁戊任意排给剩下的三课,有种,丙为英语课代表时,继续分类,甲当数学课代表时,其他三位同学任意当有种,当甲不当数学课代表,甲只能从物理和化学课中选一课,乙只能从语文和甲选完后的剰下的一课中选一课,丁和戊做剰下的两课,有,共计丙为化学课代表时,同的选法一样有种,根据分类计数原理得,不同的选法共有故选.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1是否存在实数使函数是奇函数?并说明理由;

21的条件下,当 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,以上顶点和右焦点为直径端点的圆与直线相切.

(1)求椭圆的标准方程;

(2)对于直线和点,椭圆上是否存在不同的两点关于直线对称,且,若存在实数的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中,若 处切线的斜率为

(1)求函数的解析式及其单调区间;

(2)若实数满足,且对于任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,平面 平面 分别为的中点.

1)求证: 平面

2)求证:平面 平面

3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在刚刚结束的五市联考中,某校对甲、乙两个文科班的数学成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀,成绩统计后,得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为.

班级

优秀

非优秀

合计

甲班

18

乙班

43

合计

110

(1)请完成上面的列联表;

(2)请问:是否有的把握认为“数学成绩与所在的班级有关系”?

(3)用分层抽样的方法从甲、乙两个文科班的数学成绩优秀的学生中抽取5名学生进行调研,然后再从这5名学生中随机抽取2名学生进行谈话,求抽到的2名学生中至少有1名乙班学生的概率.

参考公式: (其中)

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校的一个社会实践调查小组,在对该校学生的良好“用眼习惯”的调查中,随机发放了120分问卷.对收回的100份有效问卷进行统计,得到如下列联表:

做不到科学用眼

能做到科学用眼

合计

45

10

55

30

15

45

合计

75

25

100

(1)现按女生是否能做到科学用眼进行分层,从45份女生问卷中抽取了6份问卷,从这6份问卷中再随机抽取3份,并记其中能做到科学用眼的问卷的份数,试求随机变量的分布列和数学期望;

(2)若在犯错误的概率不超过的前提下认为良好“用眼习惯”与性别有关,那么根据临界值表,最精确的的值应为多少?请说明理由.

附:独立性检验统计量,其中.

独立性检验临界值表:

0.25

0.15

0.10

0.05

0.025

1.323

2.072

2.706

3.840

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某校歌咏比赛中,甲班、乙班、丙班、丁班均可从四首不同曲目中任选一首.

(1)求甲、乙两班选择不同曲目的概率;

(2)设这四个班级总共选取了首曲目,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次抗洪抢险中,准备用射击的方法引爆从桥上游漂流而下的一个巨大的汽油灌,已知只有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆.每次射击相互独立,且命中概率都是,求(1)油罐被引爆的概率;(2)如果引爆或子弹打光则停止射击,设射击次数为,求的分布列.

查看答案和解析>>

同步练习册答案