精英家教网 > 高中数学 > 题目详情

【题目】【2017福建三明5月质检】如图,在四棱锥中,侧面底面,底面是平行四边形, 的中点,点在线段上.

(Ⅰ)求证:

(Ⅱ)试确定点的位置,使得直线与平面所成的角和直线与平面所成的角相等.

【答案】(I)详见解析;(II).

【解析】

(Ⅰ)证明:在平行四边形中,连接,因为

由余弦定理得,得

所以,即,又

所以

,所以

所以平面,所以

(Ⅱ)侧面底面 ,所以底面,所以直线两两互相垂直,以为原点,直线为坐标轴,建立如图所示空间直角坐标系,则 ,所以

所以

易得平面的法向量

设平面的法向量为

,令,得

因为直线与平面所成的角和此直线与平面所成的角相等,

所以,即,所以

,解得,所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我们把焦点相同,且离心率互为倒数的椭圆和双曲线称为一对“相关曲线”.已知F1、F2是一对相关曲线的焦点,P是它们在第一象限的交点,当∠F1PF2=60°时,这一对相关曲线中双曲线的离心率是(  )
A.
B.
C.
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017辽宁葫芦岛市二模】已知数列满足: .

(1)求数列的通项公式;

(2)若,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果执行如图所示的框图,输入N=5,则输出的数等于( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A、B、C所对的边分别是a、b、c,且满足csinA﹣ acosC=0.
(1)求角C的大小;
(2)若c=2,求△ABC的面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017福建4月质检】如图,三棱柱中, 分别为棱的中点.

(1)在平面内过点平面于点,并写出作图步骤,但不要求证明.

(2)若侧面侧面,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC﹣A1B1C1中,AC⊥BC,AB⊥BB1 , AC=BC=BB1 , D为AB的中点,且CD⊥DA1

(1)求证:BC1∥平面DCA1
(2)求BC1与平面ABB1A1所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若a,b是异面直线,直线c∥a,则c与b的位置关系是(
A.异面或相交
B.相交
C.异面
D.平行

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是各项都为正数的等比数列,其前n项和为Sn , 且S2=3,S4=15.
(1)求数列{an}的通项公式;
(2)若数列{bn}是等差数列,且b3=a3 , b5=a5 , 试求数列{bn}的前n项和Mn

查看答案和解析>>

同步练习册答案