精英家教网 > 高中数学 > 题目详情

【题目】如图所示,由一块扇形空地,其中米,计划在此扇形空地区域为学生建灯光篮球运动场,区域内安装一批照明灯,点选在线段上(点分别不与点重合),且.

1)若点在距离米处,求点之间的距离;

2)为了使运动场地区域最大化,要求面积尽可能的小,记,请用表示的面积,并求的最小值.

【答案】1米;(2,最小面积为平方米.

【解析】

1)利用余弦定理求得的长度,并求出,可得出,可得出,进而可求得的长度;

2)利用正弦定理求出关于的表达式,利用三角形的面积公式可得出的表达式,结合三角恒等变换思想化简,利用正弦型函数的有界性可求得的最小值.

1)在中,

由余弦定理得

中,由,解得

,故,可知,求得,因此,(米);

2)记,则有

由正弦定理可得

,则,则当时,即当时,有最小值平方米

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知相交于点,线段是圆的一条动弦,且,则的最小值是___________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是抛物线上一点,经过点的直线与抛物线交于两点(不同于点),直线分别交直线于点.

1)求抛物线方程及其焦点坐标;

2)求证:以为直径的圆恰好经过原点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱的侧面是平行四边形,,平面平面,且分别是的中点.

(Ⅰ)求证:

(Ⅱ)求证:平面

(Ⅲ)在线段上是否存在点,使得平面?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的左右焦点分别为实轴长为6,渐近线方程为动点在双曲线左支上为圆上一点的最小值为

A. 8 B. 9 C. 10 D. 11

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥中底面为菱形平面分别是上的中点直线与平面所成角的正弦值为上移动.

(Ⅰ)证明:无论点上如何移动都有平面平面

(Ⅱ)求点恰为的中点时二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,的中点,则异面直线所成的角的余弦值是( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于的二项式的展开式的二项式系数之和为1024,常数项为180.

1)求的值;

2)求展开式中的无理项.(不需求项的表达式,指出无理项的序号即可)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论的单调性;

(2)当时,,求的取值范围.

查看答案和解析>>

同步练习册答案