精英家教网 > 高中数学 > 题目详情

【题目】如图,在正方体中,的中点.

1)求证:平面

2)求证:平面平面.(只需在下面横线上填写给出的如下结论的序号:①平面,②平面,③,④,⑤

证明:(1)设,连接.因为底面是正方形,所以的中点,又的中点,所以_________.因为平面____________,所以平面.

2)因为平面平面,所以___________,因为底面是正方形,所以_______,又因为平面平面,所以_________.平面,所以平面平面.

【答案】1)⑤,②(2)③,④,①

【解析】

1)由中位线的性质即可得到第一空的答案,进而利用线面平行判定的条件得到第二空的答案;(2)利用线面垂直的性质,正方形对角线互相垂直以及面面垂直的判定条件得解.

1)因为底面是正方形,

所以的中点,又的中点,

所以

因为平面平面

所以平面

故答案为:⑤②

2)因为平面平面

所以

因为底面是正方形,

所以

又因为平面平面

所以平面

平面,所以平面平面

故答案为:③④①

故答案为:(1)⑤,②(2)③,④,①

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了解本市居民的生活成本,甲乙丙三名同学利用假期分别对三个社区进行了“家庭每月日常消费额”的调查.他们将调查所得的数据分别绘制成频率分布直方图(如图所示),记甲乙丙所调查数据的标准差分别为,,,则它们的大小关系为__________.

(甲)

(乙)

(丙)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知下列四个说法中:

表示同一函数;

②已知函数的定义域为,则的定义域为

③不等式对于恒成立,则的取值范围是

④对于集合

,则的取值范围,其中正确说法的序号是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知整数对排列如下:(11),(12),(21),(13),(22),(31),(14),(23),(32),(41),(15),(24......则第60个整数对是(

A.(57)B.(115)C.(75)D.(511)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l:(2+mx+1﹣2my+4﹣3m=0

1)求证:不论m为何实数,直线l恒过一定点M

2)过定点M作一条直线l1,使夹在两坐标轴之间的线段被M点平分,求直线l1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某镇在政府精准扶贫的政策指引下,充分利用自身资源,大力发展养殖业,以增加收入.政府计划共投入72万元,全部用于甲、乙两个合作社,每个合作社至少要投入15万元,其中甲合作社养鱼,乙合作社养鸡,在对市场进行调研分析发现养鱼的收益、养鸡的收益与投入(单位:万元)满足.设甲合作社的投入为(单位:万元),两个合作社的总收益为(单位:万元).

1)若两个合作社的投入相等,求总收益;

2)试问如何安排甲、乙两个合作社的投入,才能使总收益最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题p:函数fx=lgx2+ax+1)的定义域为R;命题q:函数fx=x2﹣2ax﹣1在(﹣∞﹣1]上单调递减.

1)若命题“p∨q”为真,“p∧q”为假,求实数a的取值范围;

2)若关于x的不等式(x﹣m)(x﹣m+5)<0m∈R)的解集为M;命题p为真命题时,a的取值集合为N.当M∪N=M时,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若三棱锥的四个面都为直角三角形,平面,,,则三棱锥中最长的棱长为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足,设

1)求

2)判断数列是否为等比数列,并说明理由;

3)求的通项公式.

查看答案和解析>>

同步练习册答案