【题目】已知函数,,为自然对数的底数.
(Ⅰ)若为单调递增函数,求实数的取值范围;
(Ⅱ)当存在极小值时,设极小值点为,求证:.
【答案】(Ⅰ)(Ⅱ)见解析
【解析】
(Ⅰ)由,可令,然后,,然后通过讨论的单调性,进而可以求出的最小值,又由为单调递增函数,即可求解.
(Ⅱ)利用导数的方法可得出,当时,①,利用,得②,然后,利用①和②可得,,进而令函数,利用的单调性,即可求证.
解:(Ⅰ)由题意知,
由为增函数可知恒成立.
设,,
令得,
当时,,单调递减,即单调递减;
当时,,单调递增,即单调递增.
故,又由为单调递增函数,则恒成立,因此,,所以,.
经检验,当时,满足题意.
(Ⅱ)由(Ⅰ)知时,.
又因为,,且在上单调递减,
所以存在使得,,
令,,
当时,,单调递增,
故,
又,在上单调递增,故存在使得.
因此有在上单调递增,在上单调递减,在上单调递增,
故,,利用
将代入消去得,
函数的对称轴为,
故在上单调递减,
因此,即成立.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知曲线C的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρ(cosθ+sinθ)=8.
(1)求曲线C和直线l的直角坐标方程;
(2)若射线m的极坐标方程为θ(ρ≥0),设m与C相交于点M(非坐标原点),m与l相交于点N,点P(6,0),求△PMN的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了积极稳妥疫情期间的复学工作,市教育局抽调5名机关工作人员去某街道3所不同的学校开展驻点服务,每个学校至少去1人,若甲、乙两人不能去同一所学校,则不同的分配方法种数为___________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以平面直角坐标系的原点为极点,轴的正半轴为极轴,取相同的单位长度建立极坐标系,直线的极坐标方程为,曲线的参数方程为(为参数).
(Ⅰ)求直线的直角坐标方程和曲线的普通方程;
(Ⅱ)求曲线上的动点到直线距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:和圆:,,为椭圆的左、右焦点,点在椭圆上,当直线与圆相切时,.
(Ⅰ)求的方程;
(Ⅱ)直线:与轴交于点,且与椭圆和圆都相切,切点分别为,,记和的积分别为和,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数,常数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知直线的极坐标方程为.
(1)写出及直线的直角坐标方程,并指出是什么曲线;
(2)设是曲线上的一个动点,求点到直线的距离的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com