【题目】在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:(a>0),过点P(-2,-4)的直线l的参数方程为(t为参数),l与C分别交于M,N.
(1)写出C的平面直角坐标系方程和l的普通方程;
(2)若|PM|,|MN|,|PN|成等比数列,求a的值.
【答案】(1);(2).
【解析】
试题分析:(Ⅰ)利用将曲线 极坐标方程化为直角坐标方程y2=2ax(a>0);利用加减消元消去参数将直线的参数方程化为普通方程x-y-2=0. (Ⅱ)利用直线参数方程几何意义,将直线l的参数方程代入C的直角坐标方程所得关于参数的方程,其中|PM|=|t1|,|PN|=|t2|,|MN|=|t1-t2|.再根据成等比数列列等量关系解得a=1.
试题解析:(Ⅰ)曲线C的直角坐标方程为y2=2ax(a>0);
直线l的普通方程为x-y-2=0. 4分
(Ⅱ)将直线l的参数方程与C的直角坐标方程联立,得t2-2(4+a)t+8(4+a)=0 (*) △=8a(4+a)>0.
设点M,N分别对应参数t1,t2,恰为上述方程的根.则|PM|=|t1|,|PN|=|t2|,|MN|=|t1-t2|.
由题设得(t1-t2)2=|t1t2|,即(t1+t2)2-4t1t2=|t1t2|.由(*)得t1+t2=2(4+a),t1t2=8(4+a)>0,则有
(4+a)2-5(4+a)=0,得a=1,或a=-4.因为a>0,所以a=1. 10分
科目:高中数学 来源: 题型:
【题目】 设函数f(x)=(x-1)2+bln x,其中b为常数.
(1)当b>时,判断函数f(x)在定义域上的单调性;
(2)若函数f(x)有极值点,求b的取值范围及f(x)的极值点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠BAD=60°,Q为AD的中点.
(1)若PA=PD,求证:平面PQB⊥平面PAD;
(2)点M在线段PC上,PM=tPC,试确定实数t的值,使得PA∥平面MQB.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在5件产品中,有3件一等品和2件二等品,从中任取2件,以为概率的事件是( )
A. 恰有1件一等品 B. 至少有一件一等品
C. 至多有一件一等品 D. 都不是一等品
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲,乙两台机床同时生产一种零件,其质量按测试指标划分:指标大于或等于100为优品,大于等于90且小于100为合格品,小于90为次品,现随机抽取这两台车床生产的零件各100件进行检测,检测结果统计如下:
测试指标 | [85,90) | [90,95) | [95,100) | [100,105) | [105,110) |
机床甲 | 8 | 12 | 40 | 32 | 8 |
机床乙 | 7 | 18 | 40 | 29 | 6 |
(1)试分别估计甲机床、乙机床生产的零件为优品的概率;
(2)甲机床生产一件零件,若是优品可盈利160元,合格品可盈利100元,次品则亏损20元;假设甲机床某天生产50件零件,请估计甲机床该天的日利润(单位:元);
(3)从甲、乙机床生产的零件指标在[90,95)内的零件中,采用分层抽样的方法抽取5件,从这5件中任选2件进行质量分析,求这2件都是乙机床生产的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,.
(1)若曲线在处的切线的方程为,求实数的值;
(2)设,若对任意两个不等的正数,都有恒成立,求实数的取值范围;
(3)若在上存在一点,使得成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分14分)
已知, 为椭圆的左、右顶点, 为其右焦点, 是椭圆上异于, 的动点,且面积的最大值为.
(Ⅰ)求椭圆的方程及离心率;
(Ⅱ)直线与椭圆在点处的切线交于点,当直线绕点转动时,试判断以
为直径的圆与直线的位置关系,并加以证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com