【题目】已知椭圆: 的一个焦点与抛物线的焦点重合,且过点.过点的直线交椭圆于, 两点, 为椭圆的左顶点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)求面积的最大值,并求此时直线的方程.
【答案】(1);(2)直线l的方程为x=1.
【解析】试题分析:(1)利用椭圆和抛物线有一个公共焦点和点在椭圆上进行求解;(2) 联立直线和椭圆的方程,得到关于的一元二次方程,再利用根与系数的关系、弦长公式和基本不等式进行求解.
试题解析:(1)因为抛物线y2=4x的焦点为(,0),所以椭圆C的半焦距c=,即a2-b2=3. ①
把点Q代入+=1,得+=1. ②
由①②解得a2=4,b2=1.所以椭圆C的标准方程为+y2=1.
(2)设直线l的方程为x=ty+1,代入+y2=1,
得(t2+4)y2+2ty-3=0.
设M(x1,y1),N(x2,y2),则有y1+y2=-,y1y2=-.
则|y1-y2|=====.令=m(m≥).易知函数y=m+在[,+∞)上单调递增,
则+≥+=,当且仅当m=,即t=0时,取等号.
所以|y1-y2|≤.所以△AMN的面积S=|AP||y1-y2|≤×3×=,
所以Smax=,此时直线l的方程为x=1.
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的左、右焦点分别为和,离心率是,直线过点交椭圆于, 两点,当直线过点时, 的周长为.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)当直线绕点运动时,试求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知直角坐标系中动点,参数,在以原点为极点、轴正半轴为极轴所建立的极坐标系中,动点在曲线: 上.
(1)求点的轨迹的普通方程和曲线的直角坐标方程;
(2)若动点的轨迹和曲线有两个公共点,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面为菱形, ,点在线段上,且, 为的中点.
(Ⅰ)若,求证:平面平面;
(Ⅱ)若平面平面, 为等边三角形,且,求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,底面半径为,母线长为的圆柱的轴截面是四边形,线段上的两动点, 满足.点在底面圆上,且, 为线段的中点.
(Ⅰ)求证: 平面;
(Ⅱ)四棱锥的体积是否为定值,若是,请求出该定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 过点,且离心率为.过点的直线与椭圆交于, 两点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若点为椭圆的右顶点,探究: 是否为定值,若是,求出该定值,若不是,请说明理由.(其中, , 分别是直线、的斜率)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形的面积可无限接近圆的面积,并创立了“割圆术”,利用“割圆术”,刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”,利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为( )
(参考数据: )
A. 12 B. 24 C. 48 D. 96
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com