精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)的图象在点(x0 , f(x0))处的切线方程l:y=g(x),若函数f(x)满足x∈I(其中I为函数f(x)的定义域),当x≠x0时,[f(x)﹣g(x)](x﹣x0)>0恒成立,则称x0为函数f(x)的“穿越点”.已知函数f(x)=lnx﹣ x2 在(0,e]上存在一个“穿越点”,则a的取值范围为(
A.[ ,+∞)??
B.(﹣1, ]??
C.[﹣ ,1)??
D.(﹣∞,﹣ ]

【答案】D
【解析】解:根据若函数f(x)满足x∈I(其中I为函数f(x)的定义域),当x≠x0时,[f(x)﹣g(x)](x﹣x0)>0恒成立, 利用二阶导函数为0,求解:f″(x)=﹣ ﹣a=0,显然只有当a<0时有解,其解就为“穿越点”横坐标,
故x= ,由题意x= ∈(0,e],故a≤﹣
故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图(1)所示,在直角梯形ABCD中, ,E是AD的中点,O是AC与BE的交点.将△ABE沿BE折起到△A1BE的位置,如图(2)所示.
(1)证明:CD⊥平面A1OC;
(2)若平面A1BE⊥平面BCDE,求平面A1BC与平面A1CD所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若a1=1,对任意的n∈N* , 都有an>0,且nan+12﹣(2n﹣1)an+1an﹣2an2=0设M(x)表示整数x的个位数字,则M(a2017)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|x﹣2|+2x﹣3,记f(x)≤﹣1的解集为M.
(Ⅰ)求M;
(Ⅱ)当x∈M时,证明:x[f(x)]2﹣x2f(x)≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列 的前n项和为Sn ,且满足:
;② ,其中
(1)求p的值;
(2)数列 能否是等比数列?请说明理由;
(3)求证:当r 2时,数列 是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,四边形ABCD为直角梯形,AD∥BC,AD⊥AB,AD=1,BC=2,E为CD上一点,F为BE的中点,且DE=1,EC=2,现将梯形沿BE折叠(如图2),使平面BCE⊥ABED.

(1)求证:平面ACE⊥平面BCE;
(2)能否在边AB上找到一点P(端点除外)使平面ACE与平面PCF所成角的余弦值为 ?若存在,试确定点P的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ,平面区域D由所有满足 (1≤λ≤a,1≤μ≤b)的点P构成,其面积为8,则4a+b的最小值为(
A.13
B.12
C.7
D.6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解答
(1)已知实数a,b满足|a|<2,|b|<2,证明:2|a+b|<|4+ab|;
(2)已知a>0,求证: ≥a+ ﹣2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=f(x)在[0,2]上单调递增,且函数f(x+2)是偶函数,则下列结论成立的是(
A.f(1)<f( )<f( )??
B.f( )<f(1)<f( )??
C.f( )<f( )<f(1)??
D.f( )<f(1)<f(

查看答案和解析>>

同步练习册答案