精英家教网 > 高中数学 > 题目详情
选修4-1:几何证明选讲
如图,已知AB是圆0的直径,AC是弦,AD⊥CE,垂足为D,AC平分∠BAD.
(1)求证:直线CE与圆0的相切;
(2)求证:AC2=AB•AD.

【答案】分析:(1)连接OC,利用△OAC为等腰三角形,结合同角的余角相等,我们易结合AD⊥CE,得到OC⊥DE,根据切线的判定定理,我们易得到结论;
(2)连接BC,我们易证明△ABC∽△ACD,然后相似三角形性质,相似三角形对应边成比例,易得到结论.
解答:证明:(1)连接OC,如下图所示:
因为OA=OC,
所以∠OCA=∠OAC
又因为AD⊥CE,
所以∠ACD+∠CAD=90°,
又因为AC平分∠BAD,
所以∠OCA=∠CAD,
所以∠OCA+∠CAD=90°,
即OC⊥CE,
所以CE是⊙O的切线
(2)连接BC,
因为AB是⊙O的直径,
所以∠BCA=∠ADC=90°,
因为CE是⊙O的切线,
所以∠B=∠ACD,
所以△ABC∽△ACD,
所以=
即AC2=AB•AD.
点评:本题考查的知识点是圆的切线的判定定理,判断切线有两种思路,一是过圆上一点,证明直线与过该点的直径垂直;一是过圆心作直线的垂线,证明垂足在圆上.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网选修4-1:几何证明选讲
如图,圆O的直径AB=10,弦DE⊥AB于点H,HB=2.
(1)求DE的长;
(2)延长ED到P,过P作圆O的切线,切点为C,若PC=2
5
,求PD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网A、选修4-1:几何证明选讲 
如图,PA与⊙O相切于点A,D为PA的中点,
过点D引割线交⊙O于B,C两点,求证:∠DPB=∠DCP.
B.选修4-2:矩阵与变换
已知矩阵M=
12
2x
的一个特征值为3,求另一个特征值及其对应的一个特征向量.
C.选修4-4:坐标系与参数方程
在极坐标系中,圆C的方程为ρ=2
2
sin(θ+
π
4
)
,以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为
x=t
y=1+2t
(t为参数),判断直线l和圆C的位置关系.
D.选修4-5:不等式选讲
求函数y=
1-x
+
4+2x
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-1:几何证明选讲
自圆O外一点P引圆的一条切线PA,切点为A,M为PA的中点,过点M引圆O的割线交该圆于B、C两点,且∠BMP=100°,∠BPC=40°,求∠MPB的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•徐州模拟)选修4-1:几何证明选讲
如图,直线AB经过圆上O的点C,并且OA=OB,CA=CB,圆O交于直线OB于E,D,连接EC,CD,若tan∠CED=
12
,圆O的半径为3,求OA的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•南京二模)选修4-1:几何证明选讲
如图,圆O是等腰三角形ABC的外接圆,AB=AC,延长BC到点D,使得CD=AC,连结AD交圆O于点E,连结BE与AC交于点F,求证:AE2=EF•BE.

查看答案和解析>>

同步练习册答案