精英家教网 > 高中数学 > 题目详情
18.设a>0,且a≠1,已知函数f(x)=loga$\frac{1-bx}{x-1}$是奇函数
(Ⅰ)求实数b的值;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)当x∈(1,a-2)时,函数f(x)的值域为(1,+∞),求实数a的值.

分析 (Ⅰ)因为f(x)是奇函数,所以f(-x)=-f(x),进而可得实数b的值;
(Ⅱ)由(Ⅰ)可得函数的解析式,利用导数法,可得函数f(x)的单调区间;
(Ⅲ)由a-2>1得a>3,由(Ⅱ)可得:f(x)在(1,a-2)上单调递减,从而f(a-2)=1,解得答案.

解答 解:(Ⅰ)因为f(x)是奇函数,所以f(-x)=-f(x)…(1分)
从而f(-x)+f(x)=0,即${log_a}\frac{1+bx}{-x-1}+{log_a}\frac{1-bx}{x-1}=0$,
于是,(b2-1)x2=0,由x的任意性知b2-1=0,
解得b=-1或b=1(舍),
所以b=-1.…(3分)
(Ⅱ)由(Ⅰ)得$f(x)={log_a}\frac{x+1}{x-1}$,(x<-1或x>1),
∴${f^/}(x)=\frac{-2}{{({x^2}-1)lna}}$;…(5分)
当0<a<1时,f′(x)>0,即f(x)的增区间为(-∞,-1),(1,+∞);
当a>1时,f′(x)<0,即f(x)的减区间为(-∞,-1),(1,+∞);…(9分)
(Ⅲ)由a-2>1得a>3,…(11分)
所以f(x)在(1,a-2)上单调递减,
从而f(a-2)=1,即${log_a}\frac{a-1}{a-3}=1$,
又a>3,得$a=2+\sqrt{3}$.…(13分)

点评 本题考查的知识点是函数的单调性,对数函数的图象和性质,函数的奇偶性,函数的值域,是函数图象和性质的综合应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.过抛物线y2=-4x的焦点,引倾斜角为120°的直线,交抛物线于A、B两点,则△OAB的面积为$\frac{4\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在锐角△ABC中,角A、B、C所对的边分别为a、b、c,且$\frac{acosB+bcosA}{c}$=$\frac{3\sqrt{5}}{5}$sinC.
(1)求cosC;
(2)若a=6,△ABC的面积为8$\sqrt{5}$,求c.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.由两个简单几何体构成的组合几何体的三视图中,正视图和俯视图如右图所示,其中正视图中等腰三角形的高为3,俯视图中的三角形均为等腰直角三角形,半圆直径为2,则该几何体的体积为(  )
A.$\frac{π}{2}+1$B.π+1C.$\frac{π}{2}+2$D.π+2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.y=log${\;}_{\frac{1}{2}}$(-x2+3x-2)的增区间是[$\frac{3}{2}$,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.椭圆$\frac{x^2}{36}+\frac{y^2}{9}=1$上有动P(m,n),则m+2n的取值范围为[-6$\sqrt{2}$,6$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1(-3,0),F2(3,0),直线y=kx与椭圆交于A、B两点.
(Ⅰ)若三角形AF1F2的周长为4$\sqrt{3}$+6,求椭圆的标准方程;
(Ⅱ)若|k|>$\frac{\sqrt{2}}{4}$,且以AB为直径的圆过椭圆的右焦点,求椭圆离心率e的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.用二分法求方程2x+x-8=0的一个实数解(精确度0.1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.Sn为数列{an}的前n项和,已知an>2,且an2+4n=4Sn+1.
(1)求证:{an}为等差数列;
(2)设bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,求数列{bn}的前n项和.

查看答案和解析>>

同步练习册答案