精英家教网 > 高中数学 > 题目详情
已知直线l⊥平面α,直线m?平面β,有下列四个命题:
①若α∥β,则l⊥m;
②若α⊥β,则l∥m;
③若l∥m,则α⊥β;
④若l⊥m,则α∥β.
其中,正确命题的序号是(  )
A、①②B、③④C、①③D、②④
考点:空间中直线与平面之间的位置关系
专题:空间位置关系与距离
分析:利用线面垂直、面面平行、面面垂直的性质定理和判定定理对四个命题分别分析解答.
解答: 解:已知直线l⊥平面α,直线m?平面β,
对于①,若α∥β,得到直线l⊥平面β,所以l⊥m;故①正确;
对于②,若α⊥β,直线l在β内或者l∥β,则l与m的位置关系不确定;
对于③,若l∥m,则直线m⊥α,由面面垂直的性质定理可得α⊥β;故③正确;
对于④,若l⊥m,则α与β可能相交;故④错误;
故选C.
点评:本题考查了线面垂直、面面平行、面面垂直的性质定理和判定定理的运用,熟练掌握定理的题设和结论是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=
x-a
+
b-x
的单调递减区间是(
5
3
,6
),则y的最大值是(  )
A、
29
3
B、
33
3
C、
35
3
D、
2
39
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
a
b
,其中
a
=(2cosx,-
3
sin2x),
b
=(cosx,1),x∈R.
(1)求f(x)的单调递减区间;
(2)在△ABC中,角A,B,C所对的边分别为a,b,c,f(A)=-1,a=
7
,且向量
m
=(3,sinB)与
n
=(2,sinC)共线,求边长b和c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+3x(x≥0),对于曲线y=f(x)上横坐标成公差为1的等差数列的三个点A,B,C,给出以下判断:①△ABC一定是钝角三角形;
②△ABC可能是直角三角形;
③△ABC可能为锐角三角形;
④△ABC不可能是等腰三角形,其中所有正确的序号是(  )
A、①②B、①③C、②③D、①④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|x-a+1|,x≤0
x+
1
x
-a,x>0
,若f(0)是函数f(x)的最小值,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<
π
2
)部分图象如图所示.
(1)求函数f(x)的解析式;
(2)当x∈[
1
2
5
2
]时,求函数y=f(x-1)+f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲乙两名同学参加某种选拔测试,在相同测试条件下,两人5次测试的成绩(单位:分)如下表:
 第1次第2次第3次第4次第5次
6063758087
5565777889
(1)请计算甲、乙两人成绩的平均数和方差,并据此判断选派谁参赛更好
(2)若从甲、乙两人5次的成绩中各随机抽取一个成绩进行分析,设抽到的两个成绩中,80分以上的个数为ξ,求随机变量ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

某市直小学为了加强管理,对全校教职工实行新的临时事假制度:“每位教职工每月在正常的工作时间,临时有事,可请假至多三次,每次至多一小时”.现对该制度实施以来50名教职工请假的次数进行调查统计,结果如下表所示:
请假次数0123
人数5102015
根据上表信息解答以下问题:
(1)从该小学任选两名教职工,用η表示这两人请假次数之和,记“函数f(x)=x2-ηx-1在区(4,6)上有且只有一个零点”为事件A,求事件A发生的概率P;
(2)从该小学任选两名职工,用ξ表示这两人请假次数之差的绝对值,求随机变量ξ的分布列及数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

设离散型随机变量X可能取的值为1,2,3,4,P(X=k)=ka+b(k=1,2,3,4,且a>0,b>0),若E(X)=10,则ab的最大值为
 

查看答案和解析>>

同步练习册答案