精英家教网 > 高中数学 > 题目详情
3.已知集合A={-3,-2,-1,0,1,2},B={x|-2≤x<3},则A∩B=(  )
A.{-2,-1,0}B.{-2,-1,0,1}C.{-2,-1,0,1,2}D.{-2,-1,0,1,2,3}

分析 由A与B,求出两集合的交集即可.

解答 解:∵A={-3,-2,-1,0,1,2},B={x|-2≤x<3},
∴A∩B={-2,-1,0,1,2},
故选:C.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.等腰三角形ABC,E为底边BC的中点,沿AE折叠,如图,将C折到点P的位置,使P-AE-C为120°,设点P在面ABE上的射影为H.
(1)证明:点H为EB的中点;
(2)) 若$AB=AC=2\sqrt{2},AB⊥AC$,求直线BE与平面ABP所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若数列{an}的首项a1=2,且${a_{n+1}}=3{a_n}+2({n∈{N^*}})$;令bn=log3(an+1),则b1+b2+b3+…+b100=5050.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.某研究机构对高三学生的记忆力x和判断力y进行统计分析,得到下表数据
x681012
y2356
(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(2)试根据(2)中求出的线性回归方程,预测记忆力为9的同学的判断力.
(相关公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$x,参考数据$\sum_{i=1}^{4}$xiyi=158,$\sum_{i=1}^{4}$x${\;}_{i}^{2}$=344)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若函数y=x2-3x-4的定义域为[0,m],值域为[-$\frac{25}{4}$,-4],则m的最大值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知圆C的圆心为(3,1),且圆C与直线y=x相切.
(1)圆C的方程是(x-3)2+(y-1)2=2;
(2)若圆C与直线l:x-y+a=0(a≠0)交于A、B两点,且|AB|=2,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知曲线C1的参数方程为$\left\{\begin{array}{l}x=2+\frac{1}{3}t\\ y=\frac{{2\sqrt{2}}}{3}t\end{array}\right.$(t为参数),在以O为极点,以x轴为极轴的极坐标系中,曲线C2的极坐标方程为ρ=4cosθ,曲线C1与C2交于两点P,Q,
(Ⅰ)求曲线C2的直角坐标方程.
(Ⅱ)求|PQ|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知三棱柱ABC-A1B1C1中,底面三角形ABC是直角三角形,四边形A1ACC1和四边形A1ABB1均为正方形,D,E,F分别是A1B1,C1C,BC的中点,AB=1.
(Ⅰ)证明:DF⊥平面ABE;
(Ⅱ)求三棱锥A1-ABE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知a>0,设命题p:函数y=ax在R上单调递减,q:设函数y=$\left\{\begin{array}{l}{2x-2a(x≥2a)}\\{2a,(x<2a)}\end{array}\right.$,函数y>1恒成立,若p∨q为假,p∧q为真,求a的取值范围.

查看答案和解析>>

同步练习册答案