分析 作出图形,由勾股定理及重心性质求出△BGD的三边,再由余弦定理即可求得答案.
解答 解:如图所示:BC=2,AC=4,
则BD=CD=1,CE=2,AD=$\sqrt{{1}^{2}+{4}^{2}}$=$\sqrt{17}$,
BE=$\sqrt{{2}^{2}+{2}^{2}}$=2$\sqrt{2}$,
令AD,BE交于点G,则:
GD=$\frac{1}{3}$AD=$\frac{\sqrt{17}}{3}$,GB=$\frac{2}{3}$BE=$\frac{4}{3}\sqrt{2}$,
在△BGD中,cos∠BGD=$\frac{{GD}^{2}+{GB}^{2}-{BD}^{2}}{2GD•GB}$=$\frac{\frac{40}{9}}{\frac{136\sqrt{2}}{9}}$=$\frac{5\sqrt{2}}{34}$
点评 该题考查余弦定理及其应用,考查三角形的重心性质,属基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{14}$ | B. | 4 | C. | $\sqrt{17}$ | D. | $\sqrt{19}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (0,$\frac{1}{2}$) | B. | (-∞,$\frac{1}{2}$) | C. | (-$\frac{1}{2}$,0) | D. | (-∞,$\frac{1}{2}$] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com