【题目】(1)在等差数列中,已知,前项和为,且,求当取何值时, 取得最大值,并求出它的最大值;
(2)已知数列的通项公式是,求数列的前项和.
【答案】(1)当或时, 取得最大值为(2)
【解析】试题分析:(1)由已知得,从而,进而求出,根据二次函数的性质可得当或时, 取得最大值;(2)由已知得是首项为,公差为的等差数列,从而数列的前项和,由,得,从而时, 时, ,由此能求出数列的前项和.
试题解析: (1)方法一 ∵a1=20,S10=S15,
∴10×20+d=15×20+d,∴d=-.
∴an=20+(n-1)×=-n+.
∴a13=0,即当n≤12时,an>0,n≥14时,an<0,
∴当n=12或13时,Sn取得最大值,且最大值为S13=S12=12×20+=130.
(2)∵an=4n-25,an+1=4(n+1)-25,∴an+1-an=4=d,又a1=4×1-25=-21.
所以数列{an}是以-21为首项,以4为公差的递增的等差数列.
令 ,由①得n<6;由②得n≥5,所以n=6.
即数列{|an|}的前6项是以21为首项,公差为-4的等差数列,从第7项起以后各项构成公差为4的等差数列,
而|a7|=a7=4×7-25=3.设{|an|}的前n项和为Tn,则
科目:高中数学 来源: 题型:
【题目】在极坐标系中,圆的极坐标方程为,若以极点为原点,极轴所在的直线为轴建立平面直角坐标系.
(1)求圆的参数方程;
(2)在直线坐标系中,点是圆上的动点,试求的最大值,并求出此时点的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】求椭圆的标准方程
(1)已知某椭圆的左右焦点分别为F1(﹣1,0),F2(1,0),且经过点P( , ),求该椭圆的标准方程;
(2)已知某椭圆过点( ,﹣1),(﹣1, ),求该椭圆的标准方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学生在一门功课的22次考试中,所得分数茎叶图如图所示,则此学生该门功课考试分数的极差与中位数之和为( )
A.117
B.118
C.118.5
D.119.5
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2016年6月22 日,“国际教育信息化大会”在山东青岛开幕.为了解哪些人更关注“国际教育信息化大会”,某机构随机抽取了年龄在15-75岁之间的100人进行调查,并按年龄绘制成频率分布直方图,如图所示,其分组区间为: .把年龄落在区间和 内的人分别称为 “青少年”和“中老年”.
(1)根据频率分布直方图求样本的中位数(保留两位小数)和众数;
(2)根据已知条件完成下面的列联表,并判断能否有的把握认为“中老年”比“青少年”更加关注“国际教育信息化大会”;
附:参考公式,其中.
临界值表:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知△ABC满足| |=3,| |=4,O是△ABC所在平面内一点,满足| |=| |=| |,且 =λ + (λ∈R),则cos∠BAC= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学校艺术节对同一类的,,,四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:
甲说:“是或作品获得一等奖”;
乙说:“作品获得一等奖”;
丙说:“,两项作品未获得一等奖”;
丁说:“是作品获得一等奖”.
若这四位同学中只有两位说的话是对的,则获得一等奖的作品是__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com