精英家教网 > 高中数学 > 题目详情

【题目】已知两点分别在轴和轴上运动,且,若动点满足.

1)求出动点P的轨迹对应曲线C的标准方程;

2)一条纵截距为2的直线与曲线C交于P,Q两点,若以PQ直径的圆恰过原点,求出直线方程.

【答案】(1)(2)

【解析】试题分析:(1)根据向量的坐标运算,以及|AB|=1,得到椭圆的标准方程.

(2)直线l1斜率必存在,且纵截距为2,根据直线与椭圆的位置关系,即可求出k的值,问题得以解决.

试题解析:

() 因为

所以

所以

又因为,所以

即: ,即

所以椭圆的标准方程为

(Ⅱ) 直线斜率必存在,且纵截距为,设直线为

联立直线和椭圆方程

得:

,得

直径的圆恰过原点

所以,

也即

将(1)式代入,得

解得,满足(*)式,所以

所以直线

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标中,圆,圆

()在以O为极点,x轴正半轴为极轴的极坐标系中,分别写出圆的极坐标方程,并求出圆的交点坐标(用极坐标表示)

()求圆的公共弦的参数方程。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲,乙,丙,丁四名同学做传递手帕游戏(每位同学传递到另一位同学记传递1次),手帕从甲手中开始传递,经过5次传递后手帕回到甲手中,则共有__________种不同的传递方法.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设满足以下两个条件的有穷数列 期待数列

.

)分别写出一个单调递增的阶和期待数列”.

)若某期待数列是等差数列,求该数列的通项公式.

)记期待数列的前项和为,试证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为减少汽车尾气排放,提高空气质量,各地纷纷推出汽车尾号限行措施.为做好此项工作,某市交警支队对市区各交通枢纽进行调查统计,表中列出了某交通路口单位时间内通过的1000辆汽车的车牌尾号记录:

由于某些数据缺失,表中以英文字母作标识.请根据图表提供的信息计算:

(Ⅰ)若采用分层抽样的方法从这1000辆汽车中抽出20辆,了解驾驶员对尾号限行的建议,应分别从一、二、三、四组中各抽取多少辆?

(Ⅱ)以频率代替概率,在此路口随机抽取4辆汽车,奖励汽车用品.用表示车尾号在第二组的汽车数目,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)求曲线在点处的切线方程;

2)若在区间上恒成立,求a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O.DEF为圆O上的点,△DBC,△ECA,△FAB分别是以BCCAAB为底边的等腰三角形.沿虚线剪开后,分别以BCCAAB为折痕折起△DBC,△ECA,△FAB,使得DEF重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)ax2(a2b)xaln x(abR)

()b1求函数f(x)的单调区间;

()a=-1b0证明:f(x)ex>x2x1(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3ax2bxa2-7ax=1处取得极大值10,则的值为(  )

A. B. -2

C. -2或- D. 2或-

查看答案和解析>>

同步练习册答案