精英家教网 > 高中数学 > 题目详情
7.观察下列算式:1×$\frac{1}{2}$=1-$\frac{1}{2}$,2×$\frac{2}{3}$=2-$\frac{2}{3}$.3×$\frac{3}{4}$=3-$\frac{3}{4}$,…,
(1)猜想并写出第n个等式;
(2)证明你写出的等式的正确性.

分析 (1)根据已知中的式子,分析各项随n的变化规律,可猜想出第n个等式;
(2)将等式两边化简,可判断等式的正确性.

解答 解:(1)∵1×$\frac{1}{2}$=1-$\frac{1}{2}$,
2×$\frac{2}{3}$=2-$\frac{2}{3}$.
3×$\frac{3}{4}$=3-$\frac{3}{4}$,
…,
归纳可得第n个等式为:n×$\frac{n}{n+1}$=n-$\frac{n}{n+1}$;
证明:(2)左边=$\frac{{n}^{2}}{n+1}$,
右边=$\frac{{n}^{2}+n}{n+1}$-$\frac{n}{n+1}$=$\frac{{n}^{2}}{n+1}$=左边,
故原式成立.

点评 归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.点A(1,2)到直线3x-4y-5=0的距离是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知圆C1:(x+1)2+y2=1,C2:(x-1)2+y2=25,动圆C与圆C1外切,与圆C2内切,则圆C的圆心的轨迹方程为(  )
A.$\frac{x^2}{3}+\frac{y^2}{2}=1$B.$\frac{x^2}{9}+\frac{y^2}{4}=1$C.$\frac{x^2}{9}+\frac{y^2}{5}=1$D.$\frac{x^2}{9}+\frac{y^2}{8}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=kx2+x+k有两个不同的零点,且一个零点在区间(0,1)内,另一个在区间(1,3),求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在l:x+y-4=0任取一点M,过M且以椭圆$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}$=1的焦点为焦点作椭圆,问M在何处,M到两焦点的距离和最短,并求此椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设f(x)=xa,g(x)=1nx.
(1)若a=1,求证:当x>0时.f(x)≥g(x)+1;
(2)若a∈R,求关于x的方程f(x)=g(x)实根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数f(x)=10x+x-7与g(x)=lgx+x-7的零点分别为x1和x2,则x1+x2=7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=2x2ex与g(x)=3xex+a的图象有且只有两个公共点,则实数a的取值范围是a=$\frac{9\sqrt{e}}{{e}^{2}}$或-e<a≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知9a=2b=$\frac{1}{36}$,求$\frac{1}{a}$+$\frac{2}{b}$的值.

查看答案和解析>>

同步练习册答案