精英家教网 > 高中数学 > 题目详情
1.在四棱柱ABCD-A1B1C1D1中,底面ABCD是菱形,且AB=AA1,∠A1AB=∠A1AD=60°
(1)求证:平面A1BD⊥平面A1AC;
(2)若BD=$\sqrt{2}$,A1D=2,求二面角A1-BD-B1的大小.

分析 (1)推导出△A1AB和△A1AD均为正三角形,A1B=A1D,设AC与BD的交点为O,推导出A1O⊥BD,AC⊥BD,由此能证明平面A1BD⊥平面A1AC.
(2)以O为原点,OA为x轴,OB为y轴,OA1为z轴,建立空间直角坐标系,利用向量法能求出二面角A1-BD-B1的大小.

解答 证明:(1)∵AA1=AB=AD,∠A1AB=∠A1AD=60°,
∴△A1AB和△A1AD均为正三角形,∴A1B=A1D,
设AC与BD的交点为O,则A1O⊥BD,
又ABCD是菱形,∴AC⊥BD,
∵A1O∩AC=O,∴BD⊥平面A1AC,
∵BD?平面A1BD,
∴平面A1BD⊥平面A1AC.
解:(2)∵A1B=A1D,BD=$\sqrt{2}{A}_{1}D$=2,∴A1B⊥A1D,
∵A1D=AD,A1B=AB,BD=BD,
∴△A1BD≌△ABD,∴∠BAD=90°,
∴AO=AO1=$\frac{1}{2}BD=\frac{\sqrt{2}}{2}A{A}_{1}$,∴A1O⊥AO,
∵A1O⊥BD,AO∩BD=O,
∴A1O⊥底面ABCD,
如图,以O为原点,OA为x轴,OB为y轴,OA1为z轴,建立空间直角坐标系,
则A(1,0,0),B(0,1,0),D(0,-1,0),A1(0,0,1),
$\overrightarrow{B{B}_{1}}$=$\overrightarrow{A{A}_{1}}$=(-1,0,1),$\overrightarrow{DB}$=(0,2,0),
设平面B1BD的一个法向量$\overrightarrow{n}$=(x,y,z),
由$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{BD}=2y=0}\\{\overrightarrow{n}•\overrightarrow{B{B}_{1}}=-x+z=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,0,1),
平面A1BD的一个法向量为$\overrightarrow{CA}$=(2,0,0),
设二面角A1-BD-B1的平面角为θ,
则cosθ=$\frac{|\overrightarrow{n}•\overrightarrow{CA}|}{|\overrightarrow{n}|•|\overrightarrow{CA}|}$=$\frac{\sqrt{2}}{2}$,
∴θ=45°,
∴二面角A1-BD-B1的大小为45°.

点评 本题考查面面垂直的证明,考查二面角的大小的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源:2016-2017学年江西吉安一中高二上段考一数学(文)试卷(解析版) 题型:填空题

如果对任何实数,直线都过一个定点,那么点的坐标是________.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.半圆C(圆心为点C)的极坐标方程为ρ=2sinθ,θ∈($\frac{π}{4}$,$\frac{3π}{4}$).
(Ⅰ)求半圆C的参数方程;
(Ⅱ)直线l与两坐标轴的交点分别为A,B,其中A(0,-2),点D在半圆C上,且直线CD的倾斜角是直线l倾斜角的2倍,若△ABD的面积为4,求点D的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,已知D为以AB为斜边的Rt△ABC的外接圆O上一点,CE⊥AB,BD交AC,CE的交点分别为F,G,且G为BF中点,
(1)求证:BC=CD;
(2)过点C作圆O的切线交AD延长线于点H,若AB=4,DH=1,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,△PAD是等边三角形,四边形ABCD是平行四边形,∠ADC=120°,AB=2AD.
(1)求证:平面PAD⊥平面PBD;
(2)求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若y=x+$\frac{{a}^{2}}{x}$(a>0)在[2,+∞)上是增函数,则a的取值范围是(0,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=x-$\frac{1}{x}$-2mlnx(m∈R),讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在直角梯形ABCD中,AB∥DC,AD⊥AB,DC=3,AB=2,AD=1,AE=EB,DF=1,现把它沿FE折起,得到如图所示几何体,连接DB,AB,DC,使DC=$\sqrt{5}$,
(1)求证:面DBC⊥面DFB;
(2)判断是否在DC上存在一点H,使二面角E-BH-C的余弦值为-$\frac{{\sqrt{30}}}{6}$,若存在,确定点H的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若两直线3x+4y+3=0与6x+my+1=0平行,则它们之间的距离为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{5}}}{2}$C.$\frac{2}{5}$D.$\frac{{2\sqrt{5}}}{5}$

查看答案和解析>>

同步练习册答案