精英家教网 > 高中数学 > 题目详情
5.已知△ABC的三个内角A,B,C成等差数列,若A=45°,AC=4,则△ABC最短边的边长等于(  )
A.$\frac{{\sqrt{6}}}{3}$B.$\frac{{\sqrt{6}}}{2}$C.$\frac{{4\sqrt{6}}}{3}$D.$\frac{{\sqrt{3}}}{2}$

分析 由题意判断得到a为最短边,利用正弦定理即可求出值.

解答 解:△ABC中,A,B,C成等差数列,∴A+C=2B,
又A+B+C=180°,
∴3B=180°,
解得B=60°;
又A=45°,∴C=75°;
又AC=b=4,
由$\frac{a}{sinA}$=$\frac{b}{sinB}$,
得a=$\frac{bsinA}{sinB}$=$\frac{4×sin45°}{sin60°}$=$\frac{4\sqrt{6}}{3}$;
∴△ABC最短边a的边长等于$\frac{4\sqrt{6}}{3}$.
故选:C.

点评 本题考查了正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=cos(2x+ϕ)(ϕ>0且为常数),下列命题错误的是(  )
A.不论ϕ取何值,函数f(x)的周期都是π
B.存在常数ϕ,使得函数f(x)是偶函数
C.不论ϕ取何值,函数f(x)在区间[$π-\frac{ϕ}{2},\frac{3π}{2}-\frac{ϕ}{2}$]都是减函数
D.函数f(x)的图象,可由函数y=cos2x的图象向右平移ϕ个单位得到

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知随机变量X~N(0,σ2),若P(|X|<2)=a,则P(X>2)的值为(  )
A.$\frac{1-a}{2}$B.$\frac{a}{2}$C.1-aD.$\frac{1+a}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知F1(-3,0),F2(3,0),满足条件|PF1|-|PF2|=2m-1的动点P的轨迹是双曲线的一支.下列数据:①2;②-1;③4;④-3;⑤$\frac{1}{2}$,则m可以是(  )
A.①③B.①②C.①②⑤D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数g(x)=2x+5x的零点所在的一个区间是    (  )
A.(0,1)B.(1,2)C.(-1,0)D.(-2,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若变量x,y满足$\left\{\begin{array}{l}{y≤1}\\{x+y≥0}\\{x-y-2≤0}\end{array}\right.$,则z=x-2y的最大值为(  )
A.2B.1C.4D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的右焦点为F,B为其左支上一点,线段BF与双曲线的一条渐进线相交于A,且$(\overrightarrow{OF}-\overrightarrow{OB})•\overrightarrow{OA}=0$,$2\overrightarrow{OA}=\overrightarrow{OB}+\overrightarrow{OF}$(O为坐标原点),则双曲线的离心率为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知抛物线C:y2=2px的焦点坐标为F(2,0),则p=4;若已知点A(6,3),且点M在抛物线C上,则|MA|+|MF|的最小值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数$f(x)=2msinx-2{cos^2}x+\frac{m^2}{2}-4m+3$,且函数f(x)的最小值为-7,求实数m的值.

查看答案和解析>>

同步练习册答案