精英家教网 > 高中数学 > 题目详情
设函数,曲线通过点(0,2a+3),且在处的切线垂直于y轴.
(I)用a分别表示b和c;
(II)当bc取得最大值时,写出的解析式;
(III)在(II)的条件下,g(x)满足,求g(x)的最大值及相应x值.
(I)由已知可得.
(II).
(III)时,的最大值是.

试题分析:(I)根据及导数的几何意义即得到的关系.
(II)将表示成,应用二次函数知识,当时,取到最大值,得到,从而得到.
(III)根据
确定
利用基本不等式,得到g(x)的最大值及相应x值.
试题解析:(I)由已知可得
又因为.
(II)
所以当时,取到最大值,此时
.
(III)因为
所以
又因为

所以,当且仅当,即时等号成立,
所以,即的最大值是.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数,其中的函数图象在点处的切线平行于轴.
(1)确定的关系;    (2)若,试讨论函数的单调性;
(3)设斜率为的直线与函数的图象交于两点)证明:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,现要在边长为的正方形内建一个交通“环岛”.正方形的四个顶点为圆心在四个角分别建半径为不小于)的扇形花坛,以正方形的中心为圆心建一个半径为的圆形草地.为了保证道路畅通,岛口宽不小于,绕岛行驶的路宽均不小于.

(1)求的取值范围;(运算中
(2)若中间草地的造价为,四个花坛的造价为,其余区域的造价为,当取何值时,可使“环岛”的整体造价最低?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)当时,求函数的单调区间;
(2)当时,若恒成立,求实数的最小值;
(3)证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(14分)己知函数f (x)=ex,xR
(1)求 f (x)的反函数图象上点(1,0)处的切线方程。
(2)证明:曲线y=f(x)与曲线y=有唯一公共点;
(3)设,比较的大小,并说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)当时,求函数上的最大值;
(2)令,若在区间上不单调,求的取值范围;
(3)当时,函数的图象与轴交于两点,且,又的导函数.若正常数满足条件.证明:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数的图象在与轴交点处的切线方程是.
(I)求函数的解析式;
(II)设函数,若的极值存在,求实数的取值范围以及函数取得极值时对应的自变量的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数(m为常数)图象上A处的切线与平行,则点A的横坐标是(  )
A.B.1C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设曲线在点处的切线与轴的交点的横坐标为,令,则的值为(    )
A.B.C.D.

查看答案和解析>>

同步练习册答案