精英家教网 > 高中数学 > 题目详情

【题目】在某单位的食堂中,食堂每天以10元/斤的价格购进米粉,然后以4.4元/碗的价格出售,每碗内含米粉0.2斤,如果当天卖不完,剩下的米粉以2元/斤的价格卖给养猪场.根据以往统计资料,得到食堂某天米粉需求量的频率分布直方图如图所示,若食堂购进了80斤米粉,以(斤)(其中)表示米粉的需求量, (元)表示利润.

(1)估计该天食堂利润不少于760元的概率;

(2)在直方图的需求量分组中,以区间中间值作为该区间的需求量,以需求量落入该区间的频率作为需求量在该区间的概率,求的分布列和数学期望.

【答案】(1)0.65;(2)答案见解析.

【解析】试题分析:

(1)由题意可得利润函数结合题意求解不等式有即.则食堂利润不少于760元的概率是.

(2)由题意可知可能的取值为460,660,860,960.分别求得相应的概率有 .据此得出分布列,然后计算数学期望有.

试题解析:

(1)一斤米粉的售价是元.

时, .

时, .

设利润不少于760元为事件

利润不少于760元时,即.

解得,即.

由直方图可知,当时,

.

(2)当时,

时,

时,

时, .

所以可能的取值为460,660,860,960.

.

的分布列为

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2张边长均为1分米的正方形纸片分别按甲、乙两种方式剪裁并废弃阴影部分

1)在图甲的方式下,剩余部分恰能完全覆盖某圆锥的表面,求该圆锥的母线长及底面

半径;

2)在图乙的方式下,剩余部分能完全覆盖一个长方体的表面,求长方体体积的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在梯形ABCD中,ADBCADDCBC=2AD,四边形ABEF是矩形,将矩形ABEF沿AB折起到四边形ABE1F1的位置,使平面ABE1F1⊥平面ABCDMAF1的中点,如图2.

(1)求证:BE1DC

(2)求证:DM∥平面BCE1

(3)判断直线CDME1的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校从参加安全知识竞赛的同学中,选取60名同学将其成绩(百分制,均为整数,成绩分记为优秀)分成6组后,得到部分频率分布直方图(如图),观察图形中的信息,回答下列问题:

(1)求分数在[70,80)内的频率,并补全这个频率分布直方图;

(2)从频率分布直方图中,估计本次考试的平均分;

(3)为参加市里举办的安全知识竞赛,学校举办预选赛.已知在学校安全知识竞赛中优秀的同学通过预选赛的概率为,现在从学校安全知识竞赛中优秀的同学中选3人参加预选赛,若随机变量表示这3人中通过预选赛的人数,求的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点, 轴的正半轴为极轴,建立极坐标系,已知直线的参数方程为 (为参数),曲线的极坐标方程是.

(1)写出直线的普通方程和曲线的直角坐标方程;

(2)设直线与曲线相交于两点,点的中点,点的极坐标为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若椭圆C1 和椭圆C2 的焦点相同且a1>a2.给出如下四个结论:

①椭圆C1和椭圆C2一定没有公共点;

a1a2<b1b2.

其中,所有正确结论的序号是(  )

A. ②③④ B. ①③④

C. ①②④ D. ①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数,则的最大值

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=a(x-lnx)+,a∈R.

(I)讨论f(x)的单调性;

(II)当a=1时,证明f(x)>f’(x)+对于任意的x∈[1,2] 恒成立。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是直角梯形 在线段 平面.

(1)求证:平面平面

(2)当四棱锥的体积最大时求平面与平面所成二面角的余弦值.

查看答案和解析>>

同步练习册答案