【题目】现要完成下列3项抽样调查:
①从15种疫苗中抽取5种检测是否合格.
②涡阳县某中学共有480名教职工,其中一线教师360名,行政人员48名,后勤人员72名.为了解教职工对学校校务公开方面的意见,拟抽取一个容量为20的样本.
③涡阳县某中学报告厅有28排,每排有35个座位,一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请28名听众进行座谈.
较为合理的抽样方法是( )
A. ①简单随机抽样, ②系统抽样, ③分层抽样
B. ①简单随机抽样, ②分层抽样, ③系统抽样
C. ①系统抽样, ②简单随机抽样, ③分层抽样
D. ①分层抽样, ②系统抽样, ③简单随机抽样
科目:高中数学 来源: 题型:
【题目】如图,直棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB= AB.
(1)证明:BC1∥平面A1CD
(2)求二面角D﹣A1C﹣E的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种产品有4只次品和6只正品,每只产品均不相同且可区分,今每次取出一只来测试,直到这4只次品全测出为止,则最后一只次品恰好在第五次测试时被发现,则不同情况种数是______(用数字作答)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,设是平面内相交成角的两条数轴 ,分别是轴,轴正方向同向的单位向量,若向量,则把有序数对叫做向量在坐标系中的坐标,假设.
(1)计算的大小;
(2)设向量,若与共线,求实数的值;
(3)是否存在实数,使得与向量垂直,若存在求出的值,若不存在请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知对任意平面向量,把绕其起点沿逆时针方向旋转角得到向量,,叫做把点绕点逆时针方向旋转角得到点.
(1)已知平面内点,点,把点绕点顺时针方向旋转后得到点,求点的坐标;
(2)设平面内曲线上的每一点绕坐标原点沿逆时针方向旋转后得到的点的轨迹方程是曲线,求原来曲线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的左、右焦点分别为,,过且垂直于轴的焦点弦的弦长为,过的直线交椭圆于,两点,且的周长为.
(1)求椭圆的方程;
(2)已知直线,互相垂直,直线过且与椭圆交于点,两点,直线过且与椭圆交于,两点.求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某投资公司计划投资两种金融产品,根据市场调查与预测,产品的利润与投资金额的函数关系为,产品的利润与投资金额的函数关系为(注:利润与投资金额单位:万元).
(1)该公司现有100万元资金,并计划全部投入两种产品中,其中万元资金投入产品,试把两种产品利润总和表示为的函数,并写出定义域;
(2)怎样分配这100万元资金,才能使公司的利润总和获得最大?其最大利润总和为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com